


Lecture Notes in Computer Science 2107
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



Frederic T. Chong Christoforos Kozyrakis
Mark Oskin (Eds.)

Intelligent
Memory Systems

Second International Workshop, IMS 2000
Cambridge, MA, USA, November 12, 2000
Revised Papers

1 3



Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Frederic T. Chong
Mark Oskin
University of California
Dept. of Computer Science
Davis, 95616 CA, USA
E-mail:{chong,mhoskin}@cs.ucdavis.edu

Christoforos Kozyrakis
University of California
EECS Computer Science Division
415 Soda Hall 1776
Berkeley, 94720-1776 CA, USA
E-mail:kozyraki@cs.berkeley.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Cognitive technology: instruments of mind : 4th international conference ;proceed-
ings / CT 2001, Warwick, UK, August 6 - 9, 2001. Meurig Beynon ...
(ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;
Milan ; Paris ; Singapore ; Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol. 2117 : Lecture notes in
artificial intelligence)
ISBN 3-540-42406-7

CR Subject Classification (1998): B.3, B, C, D.4, F.3

ISSN 0302-9743
ISBN 3-540-42328-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH, Heidelberg
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Preface 
 

We are pleased to present this collection of papers from the Second Workshop on 
Intelligent Memory Systems. 

 
Increasing die densities and inter-chip communication costs continue to fuel 

interest in intelligent memory systems. Since the First Workshop on Mixing Logic 
and DRAM in 1997, technologies and systems for computation in memory have 
developed quickly. The focus of this workshop was to bring together researchers from 
academia and industry to discuss recent progress and future goals. 

 
The program committee selected 8 papers and 6 poster session abstracts from 29 

submissions for inclusion in the workshop. Four to five members of the program 
committee reviewed each submission and their reviews were used to numerically rank 
them and guide the selection process. We believe that the resulting program is of the 
highest quality and interest possible. The selected papers cover a wide range of 
research topics such as circuit technology, processor and memory system architecture, 
compilers, operating systems, and applications. They also present a mix of mature 
projects, work in progress, and new research ideas.  

 
The workshop also included two invited talks. Dr. Subramanian Iyer (IBM 

Microelectronics) provided an overview of embedded memory technology and its 
potential. Dr. Mark Snir (IBM Research) presented the Blue Gene, an aggressive 
supercomputer system based on intelligent memory technology.   

 
Several people contributed to making this workshop happen. We would like to 

thank the members of the program committee for the considerable time they spent 
during the review and selection process. David Patterson (UC Berkeley) and Mark 
Horowitz (Stanford), the steering committee members, provided valuable advice on 
the scope and the organization of the workshop. We would also like to thank Larry 
Rudolph (MIT), James Hoe (CMU), and the rest of the ASPLOS-IX organizing 
committee for their help with local arrangements, registration, financing, and the 
proceedings. Finally, we would like to thank all the authors that submitted their 
papers to this workshop.  

 
 
 

May 2001           Fred Chong, Christoforos Kozyrakis, and Mark Oskin 
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A 64Mbit Mesochronous Hybrid Wave Pipelined Multibank 
DRAM Macro 

Junji Ogawa1 and Mark Horowitz2 

1 Fujitsu Laboratories of America 
jogawa@fla.fujitsu.com 

2 Computer Systems Laboratory, Stanford University 

Abstract. This paper describes a high bandwidth and low latency hybrid wave-
pipelined data bus scheme for multi-bank DRAM macros on single chip 
multiprocessors. Long data bus lines inserted with multiple wave-pipelined stages at 
each bank input/output are further divided by periodically inserted synchronizing 
registers to overcome cycle time degradations due to skew and jitter effects in the 
wave-pipe. Each memory macro controller controls the access sequence not only to 
avoid internal bank access conflicts, but also to communicate with the other 
controllers through the hybrid bus. A SPICE simulation result is shown assuming 
for a 64Mbit macro comparing four 128bit wide data bus schemes. The hybrid 
scheme can realize over 1GHz on-die data bus for multi-bank DRAM. 

1. Introduction 

Designers have long known that the growing gap between DRAM performance and 
processor performance would limit system performance. With the continued scaling of 
process technologies, the large available silicon die area allows for the integration of 
DRAM and logic onto a single die. This increases the DRAM bandwidth and decreases 
the latency [2][3]. But with the possibility of putting multiple processors on a single die, 
the pressure on the DRAM bandwidth further increases [1][9][10]. 

Multi-banking the DRAM [14] can help ease this pressure by allowing multiple non-
conflicting requests to access the DRAM concurrently [5][6]. However, even with multi-
banked embedded DRAM, the connection between the processing elements and DRAM 
macros can still be a bottleneck. This paper proposes a repeated, wave-pipelined data bus 
[7][8] for multi-banked DRAM macros. The proposed data bus scheme breaks the long 
bus lines into multiple repeated stages with a synchronizer in the middle, thus making the 
bus delay linear with length. We can have multiple requests or replies in flight on the line 
at the same time by wave-pipelining the bus. Using wave pipelining we avoid the 
additional delay from synchronizing register elements [4]. Jitter on the clocking line and 
process variation ultimately limits the length of the bus, but inserting a synchronizer in 
the middle alleviates this problem at the cost of some additional delay. The periodic 
insertion of registers represents a hybrid between a fully synchronous bus and a fully 
wave-pipelined bus. The proposed hybrid wave pipeline method using multiple banks can 
meet the high bandwidth requirement in future SOCs and multiprocessors. 
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2. Concept of the Hybrid Wave Pipeline 

Figure 1 shows the concept of the DRAM data path hybrid pipeline scheme. Two macros 
are shown in figure 1, and each macro is composed of a memory controller (MC) and a 
DRAM macro, which consists of k independent banks, each with m-bit wide data 
input/output ports. Figure 1 shows how multiple DRAM macros can be shared between 
different processors or memories. Two multi-bank DRAMs are connected together using 
their backside ports. Each macro has two dedicated clock wave pipeline data paths inside, 
and pipe expansion is enabled through the backside connection using synchronizers to 
share the macros between different requestors such as a CPU or other IP macro. A system 
clock needs to be provided only into each memory controller and into the mesochronous 
synchronizers. Each of the two requestors can access all banks up to the addressable bank 
boundary. The addressable bank boundary is set up statically before memory access 
operations begin. One of the two requestors can access memory banks beyond the 
physical boundary between macros through the synchronizer. 

The purpose of hybrid wave pipelining is to balance high bandwidth and low latency 
cost-efficiently on the data path between the memory controller and memory banks. For 
future multiprocessor systems having multiple access requestors to a memory macro, the 
wide I/O port giving high bandwidth without loss of latency is a desirable feature of the 
on-die macro. 

Assuming multi-banking is implemented, there are many ways to achieve a high 
bandwidth. For example, an easy way is simply to give a wide port to each bank and 
making the whole memory macro I/O wider. However, getting higher bandwidth in this 
manner is costly in terms of the physical wiring area. Moreover, the bandwidth is 
available only to CPUs and IP macros designed to handle it, for example, a special 
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Fig. 1. Concept of Hybrid Pipeline Scheme; Each of two DRAM macros, M1 or M2, has
k banks and a memory controller (MC). Outgoing and incoming data between MC and
banks travel on the wave-pipelined bus. The opposite end of the wave-pipelined bus
connects to a synchronizing register clocked by a system clock. 
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purpose streaming-data machine [1][9][12][18]. Another way to achieve high bandwidth 
is to use a mainstream high-speed I/O technique in the standard DRAM such as 
RAMBUS [3][13][16], DDR or SLDRAM [17], and for the embedded macro data paths 
as well. However, these techniques are optimized for board-level data buses where wiring 
is extremely tight, and moreover, they would require an expensive PLL in each RAM 
bank if they were implemented on-chip.  

It is easier to increase wires and banks on-chip than on a PC board, but there are still 
trade-offs required to harmonize latency and bandwidth, while recognizing that wires are 
not free [13]. The proposed hybrid wave pipeline scheme is a candidate solution that 
maximizes the bandwidth per wire while maintaining short latency and reducing the cost 
of communication paths between different access requestors in future large VLSI chips. 

Before describing the hybrid wave pipeline scheme in detail, in the next section we 
analyze the latency and area trade-offs for different bank sizes and IO widths. 

3. Analysis of Latency and Cost of Multi-banked DRAM 

One of the crucial parameters in designing multi-banked DRAM macros is the bank size. 
While using smaller banks to get high bandwidth decreases the bank access time and 
usually the macro access time, the area overhead increases. Assuming layout using a 
0.18um embedded DRAM cell technology and 256Mbit total on die memory, Figures 2 
and 3 show estimated area and latency versus bank granularity. The base design is for a 
macro composed of 8 x 32Mbit banks using a 16bit port. Figure 2 shows the normalized 
area of a 256Mbit DRAM macro for a variety of bank sizes using 16bit, 128bit or 256bit 
access port each. The figure shows that the area increases sharply as the bank granularity 
is decreased to get high bandwidth, especially for the wide I/O banks. 

Figure 3 plots the bank and macro access time tRAC against the bank size. For the 
bank sizes shown, both the bank and macro access times improve with decreasing bank 
size mainly due to shorter word and/or bit lines. A smaller bank granularity and a wider 
bus achieve higher bandwidth, and one can also reduce the random access latency, tRAC, 
by 20% compared to the base design by tripling the macro size with 128 or more I/O 
ports. However, from the cost-performance point of view, 1Mbit or 2Mbit bank size with 
128-bit or 256-bit in a 0.18um cell technology are good alternatives, balancing the 
bandwidth and latency while paying a much lower (~1.5X) area penalty. 

Using at 0.18um DRAM cell technology, approximately 256Mbit of DRAM can be 
implemented on a single die. Based on the above estimation, it is a good choice to divide 
the memory on die into 128 x 2Mbit banks with a 128-bit width. There’s still flexibility in 
selecting the number of macros to divide the 256Mbit memory into, corresponding to the 
number of access requestors on die, each of which needs an independent controller. 

4. Data Bus Design Options 

4-1. Fully Synchronous and Asynchronous Bus 

Figure 4(a) shows a conventional data bus (CBUS) connecting all of the banks using 
dedicated read and write buses. This method has been widely used for a long time in 
actual standard DRAM designs due to the area savings by sharing wires physically for the 
bus line with all of the banks. As technology scales, sharing the bus wires with banks in a 
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large part of the chip makes it difficult to keep up with high data rate required from 
DRAM. This scheme needs thicker upper layer metal wires for the bus to reduce 
resistance, and also spacing between bus wires must be relaxed to reduce capacitance and 
crosstalk noise. The end result is serious area cost and performance degradation for future 
large chips. 

Figure 4(b) shows a fully synchronous pipeline scheme (FSP) [4], also using dedicated 
read and write buses. In this scheme, both buses are pipelined using registers at each bank 
I/O. The FSP scheme has the advantage of higher bandwidth than the conventional 
scheme, however the latency of the FSP bus is larger and increases with pipe depth, since 
each data token is advanced only one segment per clock cycle. Another advantage of FSP 
is the ease of increasing its maximum frequency as long as the system clock is distributed 
with small skew. Finally, the FSP scheme can use finer metal pitch (lower layer metals) 
than the conventional bus scheme because the paths between registers, corresponding to 
the pipe stages, are smaller. 
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Fig. 2. Bank Granularity vs. Estimated Macro Area (normalized.) The base design is a
256 Mbit DRAM divided into 8 banks with a 16-bit wide ports. The three kinds of bars
indicate 16-bit wide, 128-bit wide and 256-bit wide port macro respectively. 
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Fig. 3. Bank Granularity vs. Normalized Access Time (tRAC) 
 
Another choice is a fully asynchronous bus. In general, a fully asynchronous bus can’t 

achieve higher bandwidth nor can it achieve lower latency in real designs due to the time 
overhead for the inevitable handshaking between stages. On the other hand, a wave-
pipeline method with mesochronous synchronization has been proposed as a possible 
solution to achieve bandwidth close to the fully synchronous scheme and latency close to 
the conventional scheme [7][8]. However, wave-pipelining design is difficult due to the 
critical skew and jitter control problem, and the difficulty increases as the design scales 
up. A longer depth wave-pipeline increases skew due to dynamic voltage and temperature 
variation and on-chip process variation. 

4-2. Hybrid Scheme Based on Dedicated Clock Wave-Pipeline 

To overcome the problems discussed in the previous section, we propose a hybrid 
pipeline scheme (HBP) based on a dedicated clock wave-pipelined bus (CWP), in which 
wave-pipeline segments are connected together periodically with synchronizers. 

Figure 5(a) shows the concept of the CWP scheme. Each bus is divided into multiple 
segments, each of which corresponds to one bank I/O. Instead of using registers in every 
stage as in the FSP scheme, we wave-pipeline the bus using combinational logic blocks at 
each bank to buffer the data. Tx and Rx denote clocking signals. Tx is a dedicated clock 
used for the write bus, and Rx is a dedicated clock for the read bus. Rx and Tx can be 
generated independently, as long as they have the same frequency. As seen in figure 5(a), 
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if the macro is not connected to another macro through a synchronizer, it is possible for 
the Rx signal to be generated by the return path of the Tx signal at the end of the wave 
pipe opposite the memory controller. 

Both clocking signals propagate along replica delay lines, which match the delay of 
the data lines. The memory controller includes a mesochronous synchronizer to receive 
read data associated with Rx and then synchronize the data to the system clock domain. 
The clocking signals Tx and Rx facilitate proper latch timing at the inputs and outputs of 
the DRAM banks. The mismatch between Tx and Rx at any memory bank doesn’t cause 
a problem provided the memory controller is programmed to insert appropriate null data 
cycles when sending read/write requests so that the actual write and read latch timings at 
the bank I/O are spaced by greater than the minimum bank cycle time. In a given cycle, 
only the timing relationship between Tx and write data or between Rx and read data 
needs to be controlled. 

Figure 5(b) shows the hybrid pipeline scheme, HBP. In the HBP scheme, a set of 
synchronizers and registers are inserted between two buses, each of which has multiple 
wave-pipeline stages. Synchronization adds at most one additional system clock cycle to 
the data between wave-pipeline stages. In the HBP scheme, the load of the system clock 
can be greatly reduced compared to the FSP scheme. The maximum numbers of wave-
pipe stages is determined roughly by limiting the maximum skew generated in the 
pipeline to less than ½ of the clock period. 
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Fig. 4. (a) Conventional Bus (CBUS),  (b) Fully Synchronous Pipeline Bus (FSP) 
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Fig. 5. (a) Dedicated Clock Wave Pipeline Bus, (b) Hybrid Scheme 

4-3. Hybrid Circuit and Stage Operation 

Figure 6(a) shows the unit circuit of the wave-pipeline. An or-and (OA) gate receives 
both traveling data from the previous neighbor stage, PathIn, and outgoing data from the 
bank, Rdout, and generates the next stage in the wave-pipeline, PathOut. The write input 
of the bank, Wdin, is buffered from PathIn. The static signal Boundary_signal is used to 
shut off the pipeline at an addressable memory boundary. The wave-pipeline stage has 
negligible area penalty compared to a CBUS, due to its use of the simple OA repeater 
component. Assuming the same wire pitch used for the bus line, the area penalty of the 
CWP bus compared to the CBUS is less than 10%. The total macro area penalty is less 
than 0.6%, assuming the bus occupies 6% of the memory macro. Usually, a CBUS wire is 
wider than a CWP bus wire, so the area penalty will be reduced in an actual design. 

To latch write-in data and addresses correctly into a RAM bank, each uses its local Tx 
clock, which can also be used to activate the bank. On the other hand, the MC needs a 
mesochronous controller to receive its 128-bit data correctly. The internal MC 
synchronizer needs an initializing operation to learn the pipe delay characteristics. 
Individual banks don’t need synchronizers, even while sending read-out data after bank 
activations triggered by Tx, because the MC knows when the write or read enable signal 
should be sent, and how many null data cycle should be inserted to skip a cycle. 
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Fig. 6. Hybrid scheme Unit Circuit: (a) CWP bank write data-in buffer and OA,  (b) Synchronizer 
 
 
 

Figure 6(b) shows a simple embodiment of a mesochronous synchronizer, which has 2 
flip-flops for 2-way interleaving and a multiplexor or 2x2 switch for every data line, and 
one shared phase comparator and adjustable delay element. If the frequency is high, more 
interleaving flip-flops are needed with finer gradations of clock phase. Dynamic phase 
adjustment and an accurate phase-interpolator should be provided in the synchronizer for 
fine-tuning. Although synchronizers both in the MC and in the middle of the wave-pipe 
cost additional layout area, the penalty is less than 1% of the macro area due to the 
relatively small number needed in the HBP scheme. 

Figure 7 shows the CWP read path circuit and the bank read data registers in detail. A 
timing diagram of read operation in Figure 7 is shown in Figure 8. Before starting the 
operation, all lines are pre-charged to “1” and transition only when sending a “0”. The 
dedicated reference clock, Rx, always travels on the replica wires in the same direction as 
outgoing data at the same time, as shown in the figure, so that data and clock (Rx) 
propagation delay between Pathin (N04)-N06-N14 and RxIn (N00)-N01-N10 are 
matched to minimize skew.  

R0d, R1d and R2d denote 128-bit wide read data registers in three banks 0, 1, and 2, 
respectively. The registers are clocked by their local Rx signals (N02, N12 and N22). 
Outputs data N03 from R0d goes to N05, which is one of two inputs of the wave-pipe OA 
gate (the OR gate for the Boundary-signal is not shown in the figure for simplicity). 
Clock in to data out delay between RxIn (N00)-N02-N03-N05-N06 and N01-N10-N12-
N13-N15-N16 should be matched as well. In this way, the maximum frequency of the 
read operation is limited mainly by the sum of flip-flop delay (Tsetup + Tck-q) plus data 
and clock skew, as long as the inserted synchronizer can follow the frequency. 

Since high bandwidth requires a large number of wires in the wave pipeline, reducing 
the area of the bus is an important issue in an actual design. We can wire the bus using 
the intermediate metal layers for data lines, which typically have twice the resistance of 
the top metal layers. Since over half of the delay is contributed by skew and flip-flop 
related timing such as clock to Q delay at maximum bandwidth, the delay contributed by 
wires is not dominant in the hybrid scheme. Therefore, it is possible to reduce the area 
penalty of the bus by using the intermediate metal layers without significantly increasing 
latency. The resultant macro overhead of this HBP scheme is estimated to be around 2%. 
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Fig. 7. Wave Pipeline Circuit for Data Read in HBP and CWP 

 
Fig. 8. Timing Diagram of the Wave Pipeline Circuit (see. Figure 7) 
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4-4. Comparison of Bandwidth and Latency 

Figure 9 shows bandwidth and latency comparisons for the four bus schemes, CBUS, 
FSP, CWP and HBP, each with 128-bit input/output and 2Mbit banks. For the 
simulations, we used a 0.18um CMOS logic circuit technology with 0.18um DRAM cell 
technology. (We expect future processes aimed at SOC will combine high-density 
DRAM cells with high-speed CMOS transistors for logic.) 

Figure 9(a) and 9(b) results were obtained using SPICE simulation. In our SPICE 
simulations, we modeled the power supply distribution using an RC mesh, and forced a 
dynamic voltage variation by attaching piece-wise linear noise current sources at each 
bank representing the bank transient current. The noise is initially adjusted to cause a 5% 
p-p jitter on the path in each 3-sigma worst-case process corner in order to quantify skew 
and performance degradation. The system clock was assumed relatively clean with only a 
fixed estimated skew of 120psec. 

Assuming use of intermediate metal layers for the bus lines and 2Mbit bank size, the 
fully synchronous bus, FSP, has four times higher bandwidth than that of the CBUS when 
the pipeline depth is over eight, as shown in Figure 9(a). However, under the same 
conditions, the FSP has at least 30% higher latency than the conventional scheme, as 
shown in Figure 9(b). Wave pipelining in CWP can achieve both high bandwidth and low 
latency so that the hybrid scheme, HBP, can realize bandwidth close to FSP and latency 
close to CWP even with the longer length bus, as long as synchronizers are inserted 
periodically. 

The HBP advantage will increase depending on the bus length and the degree to which 
future wire technologies can scale RC characteristics. In fact, the wave pipeline itself has 
a length limit depending on the process variation and jitter within each pipe region for a 
given clock frequency.  This limit can be reduced by: 1) using simple OA-buffers in 
replicated layout for both data and dedicated clock lines as explained above, and 2) 
inserting a synchronizer in the middle of the path. 

Fig. 9. (a) Bandwidth vs. Pipe Depth, (b) Latency vs. Pipe Depth 
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4-5. Taking Advantage of the Latency Difference between Banks 

The MC controls access sequences [5][10][11] when conflicting bank addresses arrive. 
The MC design could be enhanced to manage the latency difference of each bank and 
pass the data to the requester when it is ready. However, to take advantage of the lower 
latency to nearby banks, a handshake is required between the access requestor and the 
memory macro to know when the response from the memory returns. Advanced 
multiprocessors, including stream specific machines, generally use deep-pipe processing, 
and it seems to be rather difficult to take advantage of these kinds of address dependent 
latency differences without stalling their pipelines frequently, especially when the 
difference in total latency from different banks is small. In future large chips, if the area 
ratio between the processing units and the DRAM becomes smaller and the ratio 
∆tRAC/tRAC becomes larger, it will become more desirable to take advantage of the 
latency difference. 

5. Embedded Macro Architecture 

5-1. 64Mbit Macro Architecture 

Figure 10(a) shows the block diagram of a 64Mbit macro; four 64Mbit macros are on a 
die. This 64Mbit macro has 32 x 2Mbit banks and two streams of wave pipe paths. Figure 
10(b) shows the 2Mbit bank in detail, which is divided into 8 blocks having 1K sense-
amplifier, 256 word lines, 128-bit read and write data buffers, address registers, and 
control register and logic. 

In Figure 10(a), two streams of wave pipeline path, p00 to p07 and p10 to p17, are 
shown. Each pij denotes one pipe stage data path circuit block shared between two banks. 
For example, the stage p00 is used for both bank #00 and bank #08. An internal memory 
controller manages access sequence control not only to arbitrate access requests from 
different source [5], but also to manage the wave pipelining to prevent bank-to-bank 
access conflicts. The macro can have two ports, a main port on the front side near the 
MC, and a sub-port on the backside at the far end of the wave pipeline. In the HBP 
scheme, the backside port connects to the synchronizer (not shown in Figure 10.)  
In terms of the simultaneous access to one macro from multiple requestors, the number of 
accessible ports is equal to the number of wave-pipeline streams designed into the macro. 

5-2. Four-Tile Configuration on a Single Chip 

Figure 11 shows a configuration example of four 64Mbit macros, M1-M4, using a hybrid 
pipeline with synchronizers connecting M1 to M2 and M3 to M4. If each memory 
controller has additional logic, M1 can connect to M3, and M2 can connect to M4 
vertically on the left and right sides in this figure.  

By connecting two banks at their backsides as shown in Figure 1 and 11, and inserting 
the synchronizer, the wave pipeline becomes expandable. As the path length increases, 
which means a deep pipe, this hybrid scheme gains an advantage compared to both FSP 
and CWP. The wave pipeline itself has a length limit depending on the process variation 
and jitter within each pipe region, but inserting a synchronizer reduces this limit. 
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Fig. 10. Block Diagram of a 64Mbit DRAM Macro. (a) 64Mbit Macro, (b) 2Mbit Bank 
 

Fig. 11. Example Block Diagram of Four-Tile Configuration 
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6. Conclusion 

Future systems will demand higher bandwidth and lower latency from DRAM. Moving to 
embedded DRAM improves both of these metrics, but the on-chip bus to the DRAM can 
still be a bottleneck. We have proposed a hybrid bus scheme employing wave-pipelining 
and periodic synchronization to achieve a bandwidth near that of a fully synchronous bus 
and latency near that of a conventional bus.  
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Abstract. The performance gap between processor and memory is very
serious problem in high performance computing because effective perfor-
mance is limited by memory ability. In order to overcome this problem,
we propose a new VLSI architecture called SCIMA which integrates soft-
ware controllable memory into a processor chip in addition to ordinary
data cache. Most of data access is regular in high performance comput-
ing. Software controllable memory is better at making good use of the
regularity than conventional cache.
This paper presents its architecture and performance evaluation. In SCIMA,
the ratio of software controllable memory and cache can be dynamically
changed. Due to this feature, SCIMA is upper compatible with conven-
tional memory architecture. Performance is evaluated by using CG and
FT kernels of NPB Benchmark and a real application of QCD (Quantum
ChromoDynamics). The evaluation results reveal that SCIMA is supe-
rior to conventional cache-based architecture. It is also revealed that the
superiority of SCIMA increases when access latency of off-chip memory
increases or its relative throughput gets lower.

1 Introduction

Processor performance has been improved drastically by clock acceleration and
ILP (instruction-level parallelism) extraction techniques. Main memory perfor-
mance, however, has not been improved so much. This performance disparity
called memory wall problem[1] is very serious. To solve this problem, cache mem-
ory is widely used. However, cache is not effective in large scientific/engineering
applications[2] because data set is much larger than cache capacity. In high
performance computing (abbreviated as HPC hereafter) area, although future
advancement of semiconductor technology will certainly enlarge on-chip cache
size, the whole data set can never reside in data cache because the data size
itself grows in proportion to processing ability.

The ability of memory system is characterized by two factors, latency and
throughput. There have been proposed a lot of latency hiding techniques, such as
larger cache line, prefetching, lock-up free cache, and so on. However, all of these

F.T. Chong, C. Kozyrakis, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 15–32, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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latency hiding techniques lead to increase of the pressure on memory bandwidth.
Because the bandwidth of off-chip memory will not grow as rapid as processor
performance, reducing off-chip memory traffic is essentially required.

Therefore, it is important firstly to exploit temporal locality and making
good use of wide on-chip cache bandwidth. Secondly, decreasing the number of
off-chip memory accesses is helpful for reducing performance degradation caused
by long memory access latency.

As for the first issue of exploiting temporal locality, cache blocking [3] is a
well-known and promising optimization. Unwilling line conflicts, however, still
increase memory traffic and degrade performance. To solve this problem, good
tile size selection algorithm [4] and padding technique [5] have been proposed
so far. However, programs should be rewritten carefully depending on the detail
of both the cache structure and the data array structure. Moreover, these tech-
niques cannot completely remove line conflicts among different data arrays. For
example, they cannot avoid the unfortunate but frequent situations where data
with little reusability pollutes data cache and flushes out other data which will
be used soon.

As for the second issue, the number of off-chip memory accesses can be
decreased by making the size of each data transfer large. Adopting larger cache
line could be one solution. However, unnecessary data transfer must be avoided
because it wastes memory bandwidth which is the most valuable resource. Thus,
for non-consecutive data access, this solution is harmful.

The essential reason for these problems is that it is by far difficult for hard-
ware to control data location and data replacement. Because most of the data
accesses in HPC (High Performance Computing) applications are regular, it
is reasonable to control data location and replacement by software. Thus, we
propose a new VLSI architecture named SCIMA: Software Controlled Integrated
Memory Architecture. SCIMA integrates software-controllable addressable mem-
ory into processor chip as a part of main memory in addition to ordinary cache.
Hereafter, we call that memory “On-Chip Memory” (As opposed to that, we call
off-chip main memory “Off-Chip Memory”).

Since On-Chip Memory is explicitly addressed by software, only the required
data is transferred into the On-Chip Memory without flushing out other required
data. Unfortunate conflicts can be avoided. In this point, On-Chip Memory is
better at exploitation of temporal locality than cache. Therefore, SCIMA has
the potential to solve the problems of cache and achieve higher performance.

2 SCIMA

2.1 Overview

Fig. 1 shows the schematic view of the proposed architecture SCIMA. In SCIMA,
addressable On-Chip Memory is integrated into the processor chip in addition
to ordinary cache.

Location and replacement of data are controlled by software explicitly in On-
Chip Memory, whereas those are controlled by hardware implicitly in cache. We
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Fig. 1. Overview of SCIMA

employ SRAM as the On-Chip Memory. Since our target is HPC applications,
the whole data cannot reside in On-Chip memory even if DRAM is used. Thus,
we give higher priority to speed rather than capacity. Cache is still provided to
work for irregular data accesses.

2.2 Address Space

On-Chip Memory occupies one consecutive part of logical address space. We
assume On-Chip Memory is much larger than ordinary page. Then, frequent
TLB misses degrade performance seriously if On-Chip Memory is controlled by
ordinary TLB. Therefore, On-Chip Memory is treated as a large page. Two
special registers are introduced to identify the On-Chip Memory area as shown
in Fig. 2.

– On-Chip Address Mask Register (AMR): This mask register indicates the
size of On-Chip Memory. If the least significant m bits of AMR are 0, On-
Chip Memory size is 2mbyte.

– On-Chip Address Start Register (ASR): This register holds the beginning
logical address of On-Chip Memory. This address must be aligned to the
multiple of On-Chip Memory size.

The following equation tells whether the given address is within the On-Chip
Memory area or not.

if (a given address & AMR) == ASR then On−Chip Memory area (1)

Inclusion Relation Between On-Chip Memory and Cache
All the address space has a cacheable/uncacheable property. This property is

managed by TLB and page-table mechanisms like the ordinary current proces-
sors. In SCIMA, the On-Chip Memory space, which is not under the control of
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TLB, is always handled as uncacheable. Therefore, there is no inclusion relation
between On-Chip Memory and cache.

2.3 Data Transfer Among Memory Hierarchy

The following two kinds of data transfers are available.

– register ↔ On-Chip Memory ↔ Off-Chip
– register ↔ cache ↔ Off-Chip Memory

Ordinary load/store instructions invoke transfers between registers and On-
Chip Memory when the accessed address is within On-Chip Memory area. Oth-
erwise, they access cache as usual and invoke line transfer when cache misses.

page-load and page-store Data transfers between On-Chip Memory and Off-
Chip Memory are invoked explicitly by page-load or page-store instructions which
are newly introduced. Notice that the term of page is different from ordinary page
used in virtual memory. In this paper, page is a data unit transferred by one
page-load or page-store. The size of page is assumed to be several KBytes. The
source/destination addresses and the size of data transfer are identified by these
instructions. These instructions can specify block-stride data transfer which can
pack non-consecutive data of Off-Chip Memory and transfer into a consecutive
area of On-Chip Memory. This is helpful for effective use of limited On-Chip
Memory area and Off-Chip bandwidth.

2.4 Reconfiguration of On-Chip Memory and Cache

Total memory size which is available within a processor chip depends on semicon-
ductor technology and the number of transistors devoted to the processor core.
It is a difficult problem to decide the best ratio of cache and On-Chip Memory
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Fig. 3. Example of On-Chip Memory and Cache Configuration

sizes under these constraints. The answer highly depends on the characteristics
of target applications. Thus, we propose a reconfiguration mechanism where On-
Chip Memory and cache share the hardware memory structure and the ratio of
them can be changed on the same hardware. Due to this feature, SCIMA is up-
per compatible with conventional memory architecture. This subsection shows
the hardware mechanism.

Hardware Mechanism
In addition to ASR and AMR described in section 2.2, we introduce the

following special registers for reconfiguration of On-Chip Memory and cache.

– Way Lock Register (WLR): The bit width of this register is equal to the
degree of cache associativity (the number of ways): If the bit of the corre-
sponding way is set to on, that way is locked as On-Chip Memory.

– On-chip Memory Valid(OMV): This register has 1 bit entry which indicates
whether any way is utilized as On-Chip Memory.

Fig. 3 shows an example of configurations. This figure illustrates the case
where 32KB 4way cache is divided into 16KB 2way cache and 16 KB On-Chip
Memory. On-Chip Memory area is assigned by a system call. When the system
call is executed, data in the corresponding ways is flushed out, the corresponding
bits of the WLR and OMV are set to on, and the right values are set to AMR
and ASR. The WAY bits of AMR indicate the number of ways locked as On-
Chip Memory and the WAY bits of ASR indicate the way from which On-Chip
Memory is allocated. In Fig. 3, the WAY bits of AMR are 10 and those of ASR
are 00. This indicates that two ways are utilized as On-Chip Memory and locked
beginning from way 0. Table 1 shows the possible configurations of On-Chip
Memory in the example of Fig. 33 .

3 Note that if OMV is 1, WLR is determined by the WAY bits of ASR and AMR.
Otherwise, all the bits of WRL is 0. Therefore, exactly speaking, WRL is redundant
information.
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Table 1. Configuration of On-Chip Memory

On-Chip WAY bits WAY bits Ways utilized as
Memory size of ASR of AMR On-Chip Memory WLR OMV

32KB 00 00 way0,1,2,3 1111 1
16KB 00 10 way0,1 0011 1

10 10 way2,3 1100 1
8KB 00 11 way0 0001 1

01 11 way1 0010 1
10 11 way2 0100 1
11 11 way3 1000 1

0KB — — N/A 0000 0

Actions of Memory Access
When a memory access occurs, the accessed address is checked whether it is

within the On-Chip Memory area or not by using ASR and AMR (equation 1).
If the access is for On-Chip Memory, the WAY part of the accessed address bits
indicates the way to be accessed. In the example of Fig. 3, if the WAY part of
the accessed address is 00, Way 0 is accessed. The important point is that the
sets to be accessed are determined by SET bits of Fig. 3 no matter whether the
address is within On-Chip Memory or not. Due to this feature, critical path does
not get longer than ordinary cache access. The followings are the procedure of
memory access:

1. The corresponding sets decided by SET bits of the address are accessed. In
parallel with this access, whether the address is within On-Chip Memory
area or not is decided by ASR, AMR and OMV.

2. If the accessed address is within On-Chip Memory, the data from the cor-
responding way (decided by WAY bits) is selected. Otherwise, ways whose
WLR is 0 are accessed as ordinary cache.

2.5 Other Architectural Issues

We must consider other architectural issues. One is the guarantee of correct
access order of On-Chip Memory and the other is coherence problem between
cache and Off-Chip Memory. The former issue implies that execution of page-
load/page-store and load/store instructions should wait for the completion of
preceding those instructions if the accessed address is the same location on On-
Chip Memory. The latter issue implies that if a certain Off-Chip Memory area
is accessed by page-load/page-store instructions when cache holds the data of
that area, consistency between cache and Off-Chip Memory must be kept. See
[6] for the detail description of these issues.

2.6 Benefit of On-Chip Memory

The benefit of On-Chip Memory is summarized as follows.
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1. better use of temporal locality
Even though temporal locality of data access is extracted, for example by

tiling, unwilling line conflicts prevent cache from making good use of the
locality. Especially, conflicts between data of plenty locality and those of
little locality are very harmful. However, such kinds of conflicts frequently
occur in HPC. On-Chip Memory can avoid such interferes because software
can do the control explicitly.

2. suppress of unnecessary data transfer
For non-consecutive or stride data access, unnecessary data in the same line
is transferred from off-chip memory. This is the waste of valuable off-chip
bandwidth and cache space. On-Chip memory avoids this unnecessary data
transfer by the block-stride transfer mechanism of page-load and page-store.

3. improvement of effective bandwidth
For consecutive data access, the number of data transfer is reduced by in-

voking a large amount of data transfer at a time. This is helpful for making
effective off-chip bandwidth closer to its theoretical bandwidth. This opti-
mization gets more important when the access latency increases. In ordinary
cache, this could be possible by using larger line. However, this also increases
the opportunity of line conflicts and unnecessary data transfer. On-Chip
Memory realizes a large amount of consecutive data transfer without these
sacrifices.

Since off-chip bandwidth will not grow as fast as on-chip bandwidth, reducing
off-chip traffic is essentially required. The first and the second benefits contribute
to the reduction of off-chip traffic. The third optimization contributes to the
relaxation of performance degradation caused by off-chip access latency.

3 Optimization of Benchmarks

In this paper, performance of cache-based architecture and SCIMA is evaluated
and compared by using two kernels (CG, FT) of NAS Parallel Benchmarks[7]
and QCD (Quantum ChromoDynamics) computation[8]. QCD is a practical ap-
plication used at Center for Computational Physics, University of Tsukuba[9]. In
the evaluation, each benchmark is optimized for cache architecture and SCIMA
respectively. In this section, we describe the overview of the benchmarks and
explain how to optimize them for the two architectures.

Table 2 shows the data sets of target programs used in the evaluation. For
saving simulation time, Class-W was selected in CG and FT. On the other hand,
the data size of QCD is fairly practical[10]. In QCD, we measured the required
time for executing the most time consuming part once. This part is executed so
many times in the real computation.

As mentioned later in Section 4.2, we assume the total size of cache/On-Chip
is 32KB. This size is quite small but reasonable for evaluating class-W benchmark
because cache and On-Chip Memory is usually smaller than the whole data set
in HPC.



22 Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku

Table 2. Data set of each programs

program data set
class W

Kernel CG - p: 7000 elements (double-precision)
- A: 7000×7000 (double-precision)

class W
Kernel FT - 128×128×32 (double-precision complex)

“G,R,B,V,T”: total 2.5MB
QCD “U”: 1.5MB

“M”: 3MB

*=

q a p

a(*,1) a(*,2)

cache OCM

(a) OCMp

*=

q a p

a(*,1) a(*,2)

cacheOCM

(b) OCMa

Fig. 4. Optimization for SCIMA in Kernel CG

3.1 NPB Kernel CG

The time consuming part of CG forms q = Ap, where A is sparse matrix and
p and q are vectors. The structure of the innermost loop is “sum = sum +
a(k)∗p(colidx(k))”. Therefore, A is accessed consecutively whereas p is accessed
in random. Another characteristic is that A has no reusability whereas p has
reusability.

The original code is optimized for cache-based architecture and SCIMA in
several ways as follows.

Cache-Opt: To exploit the reusability of p, blocking optimization is applied.
The computation is blocked in the same way as shown in Fig. 4 except that all
the data is of course accessed through cache.

In addition to blocking optimization, the program is optimized for SCIMA
in the following two ways.

SCIMA OCMp: The vectors p is accessed through On-Chip Memory as shown
in Figure 4-[a]. This optimization intends to have the benefit 1 of Section 2.6.



Software Controlled Reconfigurable On-Chip Memory 23

Using this optimization, the reusability of vectors p can be fully utilized without
interference within elements of the blocked vector p itself or other arrays.

SCIMA OCMa: The sparse matrix A is accessed through On-Chip Memory
as shown in Figure 4-[b]. This optimization intends to have the benefit 2 of Sec-
tion 2.6. High effective bandwidth is expected through this optimization because
large amount of data is transferred at once. Through this optimization, it is ex-
pected that reusability of vectors p is exploited better because no interference
between p and A occurs. This is the benefit 1 of Section 2.6.

3.2 NPB Kernel FT

The most time consuming part of this kernel is 3-D FFT. The FFT algorithm has
stride data access where the stride size is the power of 2. This leads to frequent
line conflicts. Moreover, there are plenty of temporal locality in the core FFT
part. Therefore, in the original benchmark code, blocking optimization is applied
and each tile is copied into a consecutive temporary area. Although the stride
data access still occurs in the part of data copy, frequent line conflicts are avoided
during the core FFT calculation. Because blocking optimization has already been
applied to the original code, we call the original code Cache-Opt.

SCIMA: In SCIMA, the temporary area for data copy is allocated on On-
Chip Memory. The data copy procedure is realized as stride data transfer from
Off-Chip Memory into On-Chip Memory. Thus, the benefit 3 of Section 2.6 is
expected. Moreover, reusability in the FFT computation would be exploited
better because no interference occurs in On-Chip Memory. This is the benefit 1
of Section 2.6.

3.3 QCD Computation

QCD is dynamics governed by quantum field theory, which is a problem of parti-
cle physics. In this theory, strongly interacting particles called hadrons are made
of fundamental quarks and gluon. Numerical simulation of QCD is formulated
on 4-dimensional space-time lattice.

In QCD computation, most of the computation is spent in solving a lin-
ear equation. The BiCGStab method, which is an iterative algorithm, is used
for solving the linear equation. We analyze the performance of the iteration in
BiCGStab.

The iteration consists of RBMULT, LOCALMULT and other routines called
inter-MULT. Note that RBMULT routine is the most time consuming part.
Table 3 illustrates the computation structure of the iteration. Lattice space is
divided into even and odd parts. For example, G e and G o reprensent even and
odd parts of array G respectively. The second line of Table 3, “B e(0.5), U(1.5)
→ G o(0.25)”, for instance, indicates that 0.25MB of array G o is computed by
accessing 0.5MB of array B e and 1.5MB of array U. Each array has the following
characteristics.
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– G,R,B,V,T: These arrays have high inter-routine reusability. In addition,
they are accessed utmost 8 times in each RBMULT routine.

– U: This array is used only in RBMULT routine which is called 4 times in
the iteration. In each RBMULT, U is accessed only once.

– M: This array is accessed only in LOCALMULT routine. Moreover, only
even or odd part of M is accessed in one LOCALMULT. Thus, each data of
M is accessed only twice in one iteration.

Table 3. Iteration Structure in QCD (accessed data size [MB])

Routine source → destination
inter-MULT 1

RBMULT B e(0.5), U(1.5) → G o(0.25)
LOCALMULT G o(0.25),M o(1.5) → G o(0.25)

RBMULT G o(0.5), U(1.5) → V e(0.25)
LOCALMULT V e(0.25),M e(1.5) → V e(0.25)
inter-MULT 2

RBMULT R e(0.5), U(1.5) → G o(0.25)
LOCALMULT G o(0.25),M o(1.5) → G o(0.25)

RBMULT G o(0.5), U(1.5) → T e(0.25)
LOCALMULT T e(0.25),M e(1.5) → T e(0.25)
inter-MULT 3

To summarize these characteristics, while G, R, B, V and T have plenty of
reusability, U and M have no intra-routine reusability and a little inter-routine
reusability. However, since the iteration is repeated so many times, even U and
M are reused over the repeated iterations. We have optimized this computation
as follows.

Cache-Opt: To exploit reusability of “G,R,B,V,T”, blocking optimization is
applied.

SCIMA: “U,M” are accessed simultaneously with “G,R,B,V,T” in the iteration
loop. Therefore, if only cache is provided, the blocks of “G,R,B,V,T”, which have
plenty of reusability, may be flushed out from the cache because of the interfer-
ences with “U,M”. To avoid the problem, this code is optimized for SCIMA as
follows. “G,R,B,V,T” are still accessed through cache because LRU algorithm
would be the best for handling them. On the other hand, “U,M” are accessed
through On-Chip Memory to avoid interference with “G,R,B,V,T”. Moreover,
high throughput can be obtained by large data transfer size because “U,M” are
accessed consecutively to some extent. These optimizations intend to have the
benefit 1 and benefit 2 of Section 2.6.
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Table 4. Assumptions in the Evaluation

Execution unit
- integer 2
- floating-point (multiply-add) 1
- floating-point (div,sqrt) 1
- load/store 1

Cache/On-Chip Memory latency 2cycle
Cache(On-Chip Memory) size 32KB
Cache associativity 4way
Cache line size 32, 64, 128, or 256B
page size 4KB
Instruction cache accesses all hit
Branch prediction perfect
Data cache structure lock-up free L1 cache
Execution order out-of-order

4 Performance Evaluation

4.1 Evaluation Environment

SCIMA is defined as an extension of existing architecture. In the evaluation,
MIPS IV is selected as the base architecture.

It would be preferable to develop an optimized compiler which can han-
dle the architectural extensions. In the evaluation, however, users specify which
data should be located on On-Chip Memory, when those should be transferred
between off-chip and on-chip memory, and which location of On-Chip Memory
should be used by directives in source programs. Giving directives is not difficult
because data accesses are fairly regular. Blocking optimization is also applied by
users.

These informations on the usage of On-Chip Memory are specified in source
program and compiled by ordinary MIPS compiler. We have developed a prepro-
cessor which inserts these informations into assembly code after the compilation.
We have also developed a clock level simulator which accepts the binary object
generated by existing compiler and interprets the informations inserted by the
preprocessor.

4.2 Assumptions for the Evaluation

Table 4 shows the assumptions used in the evaluation. These are common through-
out the evaluation.

We assume total on-chip memory (cache and On-Chip Memory) capacity is
32KB. We employ 4-way associative 32KB cache and assume four kinds of line
sizes, 32B, 64B, 128B, and 256B.
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Table 5. Combination of cache and On-Chip Memory

cache size (associativity) On-Chip Memory size
(a) 32KB (4way) 0KB
(b) 24KB (3way) 8KB
(c) 16KB (2way) 16KB
(d) 0KB (0way) 32KB

By using the reconfiguration mechanism of section 2.4, four combinations of
cache and On-Chip Memory are possible as shown in Table 5. We use configu-
ration (a) as a cache-based architecture and configuration (b) or (c) as SCIMA
architecture. Here, configuration (d) is not considered at all. because no scalar
variable can be cached in this configuration, which obviously leads to poor per-
formance. In the evaluation, configuration (c) is selected in CG and FT, whereas
configuration (b) is selected in QCD. The decision on the configuration depends
on the property of optimizations and the size of data set.

The assumptions of perfect instruction cache and branch prediction are rea-
sonable because time consuming part of HPC applications consists of regular
loops.

4.3 Classification of Execution Cycles

The execution time is classified into CPU busy time, latency stall, and through-
put stall. Total cycles are obtained under the above assumption. Throughput
stall is defined as the cycles which could be saved from total cycles if Off-Chip
Memory bandwidth were infinite. Latency stall is defined as the cycles which
could be saved further if Off-Chip Memory latency were 0 cycle. The rest is the
CPU busy time.

Each time is obtained as follows. First, Cnormal, Cth∞, and Cperfect are mea-
sured by simulation. Here, Cnormal indicate the cycles under the assumption of
Table 4. Cth∞ indicate the cycles where Off-Chip Memory bandwidth is infinite.
Cperfect indicate the cycles where Off-Chip Memory bandwidth is infinite and
Off-Chip Memory latency is 0cycle. Then, cycles of each category is calculated
as follows.

CPU busy time = Cperfect

latency stall = Cth∞ − Cperfect

throughput stall = Cnormal − Cth∞

5 Evaluation Result

5.1 Result

Fig. 5 illustrates the execution cycles and their breakdowns of each program.
In this figure, “Original” represents original code which is not modified from
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the original program. “Cache-Opt” and “SCIMA” represent modified codes op-
timized for cache and SCIMA architecture respectively. In the case of FT, only
“Cache-Opt” and “SCIMA” is given because “Original” code itself have opti-
mizations for cache as mentioned in Section 3.2.
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Fig. 5. Evaluation Result

Kernel CG
The best partitioning (tiled size) is selected through explorative experiments

for each optimization. As a result, “Cache-Opt”, “OCMp”, and “OCMa” are
partitioned into 7, 4, and 7 tiles respectively.

“Cache-Opt” achieves about 1.9 times higher performance than “Original”
when the line size is 32B. This is because “Cache-Opt” can exploit the reusability
of vector p, and consequently, latency stall and throughput stall are considerably
reduced.

“OCMp” in which p is accessed through On-Chip Memory achieves slightly
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higher performance than “Cache-Opt”. This illustrates the reusability of p is
exploited further on On-Chip Memory. This is brought by the benefit 1 of Sec-
tion 2.6. However, the improvement is not significant. In the Kernel CG, because
access pattern of each array except p is regular and consecutive, cache blocking
is quite useful.

“OCMa” in which sparse matrix A is accessed through On-Chip Memory is
1.3 times faster than “Cache-Opt” for 32B cache line. This is because line con-
flicts between p and A are avoided and because large granularity of data transfer
by page-load/page-store reduces latency stall. This is the expectant result of opti-
mization strategy in Section 3.1. However, throughput stall of “OCMa” increases
for larger cache line because line conflicts between p and colidx increase.

“OCMa” achieves the highest performance for 32B and 64B cache line whereas
“OCMp” is the fastest for 128B and 256B cache line. This indicates that the best
optimization depends on cache line

Kernel FT

“SCIMA” achieves 2.1-1.8 times higher performance than “Cache-Opt”. This
superiority is brought by the effectiveness of block-stride transfer feature of page-
load/page-store. Due to this feature, latency stall of “SCIMA” is reduced to
less than 1% compared with “Cache-Opt”. Throughput stall is also fairly small
regardless of cache line size in “SCIMA”. On the contrary, throughput stall of
“Cache-Opt” increases extremely for larger cache line size because of unnecessary
data transfer. As mentioned in Section 3.2, a tile is copied into a temporary
area, In the optimization, the size of each tile was selected as 8KB, which is
the capacity of one set within data cache, in order to avoid interferences with
other data. Then, the blocked data forms a 4 × 128 2-D array (16B for each
data). Thus, when cache line is larger than 64B (= 4 × 16B), unnecessary data
transfers occur. SCIMA does not suffer from this problem due to block-stride
data transfer.

QCD

To compare “Original” with “Cache-Opt”, there is little difference in perfor-
mance. This illustrates that even if blocking optimization is applied, performance
is not improved drastically because of the interferences between “G,R,B,V,T”
and “U,M”. However, “SCIMA” in which “U,M” are accessed through On-Chip
Memory archives 1.4 times higher performance than “Cache-Opt” and 1.6 times
higher performance than “Original” for 32B cache line.

Table 6 shows the traffic of Off-Chip Memory for 32B cache line. The sec-
ond column “cache” represents the traffic between Off-Chip Memory and cache,
whereas the third column “On-Chip Memory” represents the traffic between
On-Chip and Off-Chip memories. The last column represents the total Off-Chip
Memory traffic. As seen from Table 6, the total traffic of “SCIMA” is about
92% compared with “Cache-Opt”. This indicates that unwilling interferences
are avoided by using On-Chip Memory. In this way, our On-Chip Memory con-
tributes to the reduction of Off-Chip Memory traffic.
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Table 6. Off-Chip Memory Traffic of QCD (32B cache line)

optimization cache On-Chip Memory total
Original 26.8MB 0MB 26.8MB

Cache-Opt 22.4MB 0MB 22.4MB
SCIMA 10.4MB 11.4MB 20.8MB

5.2 Discussion

As seen from Fig. 5, for all the benchmarks, latency stall decreases but through-
put stall increases for larger line size. This is because more line conflicts are
likely to occur for larger line. Therefore, increasing the size of line does not
always bring higher performance. Considering the future direction of the semi-
conductor technology, relative Off-Chip Memory latency is expected to increase
and relative Off-Chip Memory bandwidth is expected to decrease. Therefore, it
is indispensable to reduce Off-Chip Memory traffic and to make data transfer
size larger. Next, we discuss the effectiveness of SCIMA from this viewpoint.

Fig. 6 shows the simulation results of QCD under the assumption represent-
ing future semiconductor technology. Performance is evaluated under the three
Off-Chip Memory latency (40cycle, 80cycle, 160cycle), and three Off-Chip Mem-
ory throughput (4B/cycle, 2B/cycle, 1B/cycle). These assumptions imply future
long memory latency and relative narrow bus bandwidth. Fig. 6-[A] is the same
as Fig. 5-[C].

From Fig. 6, it is observed that latency stall increases for longer latency and
throughput stall increases for narrower bus bandwidth. Consequently, overall
performance is greatly degraded as increasing Off-Chip Memory latency and nar-
rowing bus bandwidth. However, the performance of “SCIMA” is less degraded
than that of “Cache-Opt”. For example, to compare Fig. 6-[A] (4B/cycle Off-
Chip Memory throughput and 40cycle Off-Chip Memory latency) with Fig. 6-[I]
(1B/cycle Off-Chip Memory throughput and 160cycle Off-Chip Memory latency)
for 128B cache line, performance disparity between “Cache-Opt” and “SCIMA”
is widened from 1.2 to 1.4. This result indicates that effectiveness of SCIMA will
grow in the future.

6 Related Works

There have been many studies on integrating on-chip memory into processor
chip besides a cache. Ranganathan et. al.[11] proposed associativity-based par-
titioning for reconfigurable cache. The mechanism of their cache is similar to
our reconfigurable on-chip memory. Chiou et. al.[12] also proposed associativity-
based partitioning mechanism which selectively lock some parts of data cache
for avoiding unwilling data replacement. However, they do not use their recon-
figurable caches as software controllable memory and do not pay much attention
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Fig. 6. Evaluation Result of QCD under Future Technology (“TR” represents through-
put ratio between On-Chip Memory and Off-Chip Memory [On-Chip:Off-Chip] and L
represents Off-Chip Memory latency [cycle])
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how to supply data from off-chip memory. There is a DSP processor which im-
plements reconfigurable cache[13]. However, it does not focus on the reduction
of Off-Chip Memory traffic in HPC. The objective of SCIMA is to make good
use of On-Chip Memory by user control and to reduce Off-Chip Memory traffic
in HPC.

There have been proposed some processors which adopt small scratch pad
RAM [14][15]. However, those scratch pad RAMs are used for specific applica-
tions. On the other hand, the target of SCIMA is wide area of HPC applications.
Compiler-Controlled Memory[16] is a small on-chip memory which is controlled
by compiler. However, this memory is used for only spill code. On-Chip Memory
of SCIMA, on the other hand, can be used for all the data if required.

The target of SCIMA is wide area of HPC applications which have large
data set. SCIMA realizes flexible and explicit data transfer between on-chip and
off-chip memory. This is the main difference between our SCIMA and other
works.

7 Concluding Remarks

We presented a novel processor architecture SCIMA which has software-controllab
addressable memory in addition to ordinary cache. The data location and re-
placement of On-Chip Memory are controlled by software. Due to this feature,
SCIMA can control data transfer among memory hierarchy very flexibly. SCIMA
has upper compatibility with conventional memory architecture. On-Chip Mem-
ory and cache are unified in SCIMA. Therefore, if the whole on-chip memory is
used as cache, SCIMA becomes the same as conventional processors.

We presented performance evaluation of SCIMA by using three benchmarks.
The evaluation results reveal that SCIMA achieves higher performance than
cache-based architecture by reducing both throughput stall and latency stall.
The benefit of SCIMA comes from the following features. Firstly, SCIMA can
fully exploit temporal locality because unwilling line conflicts are successfully
avoided. Secondly, SCIMA can suppress unnecessary data transfer by block-
stride data transfer. Finally, SCIMA can improve effective bandwidth by realiz-
ing a large amount of consecutive data transfer.

Considering the future direction of the semiconductor technology, off-chip
memory latency is expected to increase and relative off-chip memory bandwidth
is expected to decrease. Therefore, it is indispensable to reduce off-chip memory
traffic and to make data transfer size larger. SCIMA achieves high performance
by realizing both issues. This indicates that effectiveness of SCIMA will grow in
the future.

From these results, it is concluded that SCIMA is very effective for high
performance computing. We are planning to evaluate SCIMA on other wider
variety of applications and to design SCIMA in detail for verifying the impact
on clock frequency.
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Abstract. Memory latency, the time required to retrieve a specified datum from
memory, is currently the largest limitation for high-performance computers. Mem-
ory prefetching attempts to reduce the memory latency by moving data from mem-
ory closer to the processor. Different prefetching mechanisms attempt to model
access patterns that may be used by programs. For example, a stride or stream
prefetcher assumes that programs will access memory in a linear pattern. In appli-
cations that utilize a large number of dynamically allocated objects, the memory
access patterns can become very irregular, and difficult to model.
This paper proposes content-based prefetching, a method of data prefetching that
attempts to overcome the problems introduced by the irregular memory access
patterns seen in pointer-intensive applications, thus allowing prefetches of “pointer
chasing” references. Content-based prefetching works by examining the content
of data as it is moved from memory to the caches. Data values that are likely to
be addresses are then translated and pushed to a prefetch buffer. Content-based
prefetching has the capability to prefetch sparse data structures, including graphs,
lists and trees.
In this paper we examine the issues that are critical to the performance and prac-
ticality of content-base prefetching. The potential of the content-aware prediction
mechanism is demonstrated and compared to traditional stride prefetching tech-
niques.

1 Introduction

1.1 Overview

Most prefetch mechanisms work by recording the history of load instruction usage,
indexing on either the address or the effective address of the load instruction [6,20]. This
requires the prefetcher to have observed the load instruction one or more times before
an effective address can be predicted. This method can work well for loads that follow
an arithmetic progression, but does not show good performance for pointer loads that
may exhibit a more irregular access pattern. An alternative mechanism is to try to find
a correlation between miss addresses and some other activity. The correlation [5] and
Markov [10] prefetchers record patterns of miss addresses in an attempt to predict future
misses, but this technique requires a large correlation table and a training phase for the
prefetcher.

Compiler based techniques have been proposed which insert prefetch instructions
at sites where pointer dereferences are anticipated. Luk and Mowry [15] showed that
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taking a greedy approach to pointer prefetching can improve performance despite the
increased memory system overhead. Lipasti et al. [14] developed heuristics that consider
pointers passed as arguments on procedure calls and insert prefetches at the call sites for
the data referenced by the pointers. Ozawa et al. [19] classify loads whose data address
comes from a previous load as list accesses, and perform code motions to separate them
from the instructions that use the data fetched by list accesses.

Since prefetch mechanisms target different classes of program references, they can
be combined to yield a more effective total prefetching behavior; this was explored for the
Markov prefetcher [10] and it was found that stride prefetchers improve the performance
of the Markov prefetcher by filtering references with arithmetic progressions, leaving
more table space for references with different behavior.

In this paper we examine a technique that attempts to predict addresses in pointer-
intensive applications using a hardware technique. In general the current hardware-only
predictors have two main limitations: they can only predict one instance ahead of the
current load address, and they only work with linked-lists. The predictor being pro-
posed here has no built-in biases toward the layout of the recursive data structures being
prefetched, and has the potential to run many instances ahead of the load currently being
executed by the processor. We will show this is a requirement for pointer-intensive ap-
plications, which traditionally do not provide sufficient computational work for masking
the prefetch latency. Some hybrid prefetch engines can run several instances ahead of
the processor, but they require a priori knowledge of the layout of the data structure,
and in some cases, the traversal order of the structure.

The prediction strategy being proposed in this paper is based not on the history of load
addresses, but on the content of the load itself. The content-based prefetcher borrows
techniques from conservative garbage collection [2]. When data is demand-fetched from
memory, each word of the data is examined for a likely address. The memory controller
maintains a shadow translation lookaside buffer (TLB) that both establishes what values
are likely addresses and provides a virtual-to-physical mapping to allow the physical
address to be prefetched. The physical addresses are added to a prefetch request queue
and then transferred when the memory bus becomes idle.

The remainder of this paper is organized as follows. In Section 2, we present in detail
the proposed content-based prefetching mechanism. Section 3 provides a characteriza-
tion of the workloads that will be used to evaluate the prefetch mechanism. Section 4
presents some of the preliminary results collected from simulation models that were
constructed to test the feasibility of content-aware data prefetching. Section 5 presents
a survey of both software and hardware prefetching, with a focus on the prior art that
is most relevant to the work being presented in this paper. And finally, in Section 6, we
discuss our contributions and directions for future work

2 Proposed Prefetching Scheme

2.1 Brief Overview

The content-based prefetcher works by examining the content of loads that either miss
in the L1 data cache, or access the main memory. If the content is determined to likely be
an address, that address is then loaded from memory into a prioritized prefetch request
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Fig. 1. Content-based Prefetcher Architecture.

queue, and when the memory bus is available, the address is pushed up the memory
hierarchy chain towards the L1 data cache (see Figure 1). To determine if the content of
a load is possibly an effective address, the content-based prefetcher maintains a shadow
TLB.

2.2 Trigger Mechanism

All data loads first check the L1 data cache. If a load miss occurs, the prefetch buffer
is checked. If the load hits in the prefetch buffer, the appropriate cache line is copied
into the L1 data cache and the load request is satisfied. To alleviate any coherence issues
between the prefetch buffer and the L1 data cache, the prefetch buffer entry is invalidated
once the data is moved from the prefetch buffer to the data cache. If a subsequent miss
occurs in the prefetch buffer, the miss address is sent to the content-based prefetcher
located in the memory controller.

Our initial mechanism simply monitored the load address reference stream seen at
main memory (essentially the L2 miss reference stream). This only allowed a limited
number of opportunities for the content-based prefetcher to make a prediction. If the
prefetcher was successful, this reference stream was reduced even further. For this reason
it was decided to also monitor (snoop) the L1 miss address stream.

2.3 Prediction Mechanism

The main memory is accessed to get the data located at the effective address of the
missed load. If the load is a pointer-load, this data is the effective address of a future
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load. To determine if the data is such an address, the candidate address is checked using
the shadow TLB. If the content of a candidate load results in a shadow TLB hit, the
content is deemed to be an address. The main memory is once again accessed to obtain
the data for a prefetch located at the newly determined load address. This newly initiated
prefetch request is placed into a prioritized prefetch request queue where it waits to be
pushed up the memory chain. The content-based prefetcher also incorporates a next-line
prefetcher. For every content-determined prefetch request, a prefetch request for the next
cache line is automatically placed into the prefetch request queue.

2.4 Recursive Scan

Before any prefetch requests are sent towards the L2 cache, the prefetched cache line itself
is checked for candidate effective addresses. This recursive check allows the possible
detection of next pointers in the case of linked lists, or child pointers in the case of a
tree structure. It also provides the same functionality as the look-head program counter
of the stride prefetcher: it allows the prefetcher to run ahead of the processor.

The recursive prefetch requests are placed into the prefetch request queue, ordered
by the level of recursion at which the likely address was predicted. This results in
a breadth-first ordering of the prefetch requests. There is no limit to the number of
recursive levels that the prefetcher is allowed to scan. In an effort to keep the prefetch
requests as timely and as least-speculative as possible, a primary prefetch request, a
request that originated from an L1 load miss (that is, a non-recursive prediction), causes
all the outstanding prefetch requests still residing in the prefetch queue to be squashed.
The prefetch request queue is scanned before any new requests are added to ensure no
duplicate requests reside in the queue.

2.5 Data Movement

The movement of data within this model does place new requirements on the memory
hierarchy to handle memory requests that were not initiated by the processor. When a
memory request is generated by the processor, and a miss occurs, an entry is placed in a
miss status handling register (MSHR) to record the miss. This provides the cache with
the ability to have multiple outstanding misses. When the request has been satisfied and
is propagating up the memory chain back towards the CPU, it is guaranteed to find a
matching MSHR entry that contains information about the request.

In the model being presented, the prefetch requests are initiated at the memory level,
and thus as they move up the chain there is no longer a guarantee that a matching MSHR
entry will be found. It is possible to encounter a matching entry if a demand fetch is
outstanding for the same cache block. If no matching MSHR entry is found, the request
can be stored in a free MSHR entry while waiting to continue its movement towards
the processor. If a matching entry is found, the prefetch request will be merged with
the demand fetch’s MSHR entry, resulting in a partial masking of the demand fetch’s
load latency. Any demand fetch moving up the chain that fails to find a matching MSHR
entry will be dropped, as it will have already been satisfied by a earlier prefetch request.
If the address of the prefetch request is currently not residing in the L1 data cache or the
prefetch buffer, and no partial masking has occurred, the prefetch request is placed into
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the prefetch buffer. A prefetch buffer is used for the reasons expected. Prefetched data
is speculative, and placing the data directly into the cache could inadvertently displace
valid cache lines which are still within the active working set. It also keeps a demand
fetch from displacing what would have been a useful prefetch before it could be used.

3 Workload Characteristics

3.1 Synthetic Benchmark

To evaluate the content-based prefetch mechanism, a synthetic benchmark was created
that executes long sequences of only pointer-loads. The benchmark does not provide
any computational work between loads, and is usable only as a tool for measuring the
feasibility of the prefetch mechanism.

This application creates a randomly connected graph of 64-byte nodes. The node
size equals the block line size of the various caches, thus reducing any locality benefit
the memory system may have gained by having multiple addresses per cache line. Each
node points to a single, randomly selected node. The application then repeatedly selects
a node, follows that node for 50 pointer traversals, and then selects another starting point
to avoid being caught in a loop in the structure. See Figure 2. By using a large array
(many times the size of the L1 data cache), and randomly accessing members of the
array, this synthetic application should produce large cache miss rates.

for (int nodes = 0; nodes < REPS; nodes++) {
void *here = array[nodes];
void *there;

for (int refs = 0; refs < 50; refs++ ) {
there = *here;
here = there;

}
}

Fig. 2. Synthetic benchmark source code.

3.2 Olden Benchmark Suite

The Olden benchmarks [23] were originally created to test the Olden C* compiler for
the Thinking Machines CM-5. The compiler used software caching and computation
migration to improve the performance of programs that used dynamic structures [4]. The
initial benchmarks have been stripped of the CM-5 specific code, resulting in sequential
code which runs on uniprocessor machines. It has become standard practice to use the
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uniprocessor version of the Olden benchmarks when performing research on prefetching
mechanisms that target pointer-intensive workloads.

The Olden applications are a collection of relatively small applications, each per-
forming a monolithic task. These tasks include sorting, graph optimizations, graphic
routines, and scientific code. They manipulate dynamically allocated data structures,
which are usually organized in lists or trees, rarely in arrays of structures. For this paper
only a subset of the benchmarks were evaluated. This subset includes the majority of
data structure types found in the full benchmark suite. A summary of the benchmark set,
including a brief description, type of linked data structure used, and input parameters,
is provided in Table 1.

Table 1. Olden benchmarks.

Benchmark Description Data Organization Input

bisort Sort of integers using disjoint bitonic sequences binary-tree 250000
em3d Electromagnetic wave propagation in a 3D object linked lists 2000 100 75
health Columbian health care simulation double-linked lists 5 500

perimeter Perimeters of regions in images quad-tree 10

Table 2 summarizes the dynamic instruction characteristics of each Olden appli-
cation. The table contains the total number of instructions executed and then provides
the percentage of instructions that correspond to memory operations (divided into loads
and stores), integer operations, floating point operations, control transfers (including un-
conditional branches, call/return branches used for subroutines or conditional branches)
and the percentage of “miscellaneous” instructions. Also shown is the percentage of
branches that are “taken” for each application since this provides some features of the
loop-density in each application.

Table 2. Olden benchmarks: Instruction mix as a percentage of total instructions executed.

Control
Program Instructions Memory Int. FP. Br Subr Cbr Misc

Loads Stores Ops Ops Num % Taken

bisort 291,276,993 32.00 15.83 35.98 0.00 0.81 6.30 9.06 51.85 0.00
em3d 840,666,611 31.35 5.21 44.19 7.52 0.05 1.52 10.13 70.63 0.00
health 185,371,777 37.95 12.07 30.59 0.70 0.29 2.32 16.04 89.81 0.00
perimeter 844,715,547 15.87 9.19 52.22 0.00 2.16 9.98 10.55 29.24 0.00

As a whole the Olden benchmarks are similar to the integer benchmarks found in
other benchmark suites (e.g. SPEC). They do differ in the area of memory instructions.
The percentage of load and store instructions is greater (over 40% in three of the bench-
marks), but this memory overhead is to be expected in applications that are allocating
and modifying dynamic data structures. The side-affect of the increased memory in-
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struction percentage is a reduction in the integer operation percentage, and a decrease
in the amount of computational work available to mask the memory operations.

The L1 data cache miss rates, with no prefetching (referred to as the base case in
the paper), are given in Table 3. These miss rates were measured using an 8KB, 2-way
set associative cache with 64 byte cache blocks. This is the standard L1 data cache
configuration used throughout this paper. Surprisingly both bisort and perimeter have
very small miss rates. These small a priori miss rates do not provide a lot of opportunity
for a prefetcher to improve the memory system performance of these applications.

Table 3. Olden benchmark L1 data cache miss rates.

Loads L1 Data Cache
Benchmark Executed Misses Miss %

bisort 93,217,887 3,198,387 3.43
em3d 263,623,159 38,762,235 14.70
health 70,347,560 18,836,688 26.78

perimeter 126,128,928 5,603,401 4.44

The following subsections provide an examination of each of the Olden benchmarks
being used in this paper. This includes a brief description of the task being performed,
a discussion of the data structures used, how they are accessed, and an evaluation of
whether the content-based prefetch mechanism presented in this proposal will provide a
performance improvement. ATOM [28] was used to locate those segments of code that
were the largest contributors to the application’s poor cache performance.

Bisort. The main data structure in bisort is a binary tree. The tree is generated at
the start of the program, and is populated with a set of randomly generated integers.
The program then performs both a forward and backward sort of this data. The sorting
algorithm creates a bitonic sequence in each subtree, and then merges the subtrees to
obtain the sorted result. The definition of a tree node is given in Figure 3.

struct node {
int value;
struct node *left;
struct node *right;

}

Fig. 3. Bisort binary-tree node definition.

As indicated earlier, bisort exhibits fairly good cache performance without assistance
from prefetchers. Table 3 shows that the L1 cache miss rate is less than 3.5%. This does
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not provide many opportunities for a prefetcher to improve the cache performance. This
low miss rate can be attributed somewhat to the binary-tree’s layout in memory. The
tree is generated in traversal order, with each data cache line able to hold two tree
nodes. This leads to the program benefiting from both spatial and temporal locality.
The spatial locality can interfere with the content-based prefetchers ability to issue
prefetches. Unlike a stride prefetcher that has the benefit of examining the entire L1
memory reference stream, the content-based prefetcher only sees the L1 miss reference
stream. The reduced L1 cache miss rate due to data locality reduces the miss reference
stream, which reduces the opportunities provided to the content-based prefetcher.

An examination of bisort shows that over 90% of the cache misses occur in Bimerge(),
which contains both loop control structures and recursive calls. A more detailed exami-
nation shows the majority of the misses (over 88%) can be attributed to a specific set of
loads - those loads that reference the right child of a given node. This is seen both with
and without prefetching. This cache miss behavior leads to a discussion of the overall
difficulty of prefetching nodes of a tree-based data structure. While the content-based
prefetcher is not intentionally biased against tree-based structures, the current imple-
mentation of the prefetcher shows poor performance for applications that use tree-based
data structures. This is not really a fault of the prefetcher, but an indication of how dif-
ficult it is to issue timely and useful prefetches for such structures. The prefetcher will
examine each tree node, find the left and right pointer, and issue a prefetch request for
each. During a normal in-order tree traversal, the dominate traversal path used in bisort,
the left child pointers will be followed until a leaf node is encountered. During this initial
depth-first traversal, the prefetcher will be issuing prefetches for both the left and right
child nodes as it encounters each node on the initial path to the leaf node. For a tree
with a large number of levels, such as found in bisort, the right child prefetches, while
potentially useful, are being initiated well in advance of their use. They will most likely
be replaced in the prefetch buffer before having the opportunity to be useful. In practice
this is seen by the high data cache miss rates when a right child pointer is followed.

The current breadth-first approach of the content-based prefetcher will prove ben-
eficial when a right child node reference closely follows a left child reference, which
most likely occurs near the leaf nodes. Here the right child prefetches will have a higher
probability of residing in the prefetch buffer and eliminating a potential cache miss. Thus
for bisort, the predominate cache miss will still be right child pointer references, with
the content-based prefetcher providing a modest reduction in the overall L1 data cache
miss count.

EM3D. EM3D models the propagation of electromagnetic waves in a 3D object. This
object is represented as a bipartite graph containing both E nodes and H nodes. At each
time step of the simulation, the E node values are updated using the weighted sum of the
neighboring H nodes. This process is repeated for the H nodes. The main computation
loop consists of walking down a list of nodes, obtaining the values of neighboring nodes,
and using those values to update the current node.

Over 95% of the L1 data cache misses occur in the function compute nodes() (see
Figure 4). While the outer loop is a classic example of the pointer-chasing problem, the
inner loop which contains the list traversals is not. The list traversals are actually array
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traversals, with the individual node addresses being calculated, not loaded. For the inner
loop where the bulk of the misses result from array and scalar references, content-based
prefetching should yield little improvement. The prefetcher should detect the pointer-
chasing outer loop, but the improvement will be minimal as the length of the traversals
performed in the loop are small.

void compute nodes(node t *nodelist) {
int i;

for(; nodelist; nodelist = nodelist->next);
for(i=0; i < nodelist->from count; i++);

node t *other node = nodelist->from nodes[i];
double coeff = nodelist->coeffs[i];
double value = other node->values;

}
}

}

Fig. 4. Function compute nodes() from the em3d benchmark.

Health. Health simulates the Columbian health care system. Using the terminology
from [25], health utilizes a “backbone-and-ribs” structure. The “backbone” is a four-way
tree, with the “ribs” being doubly linked lists. Each node of the tree represents a hospital,
and at each of these nodes is a linked-list of patients. At each time step of the simulation,
the tree is traversed, and the patients are evaluated. Upon evaluation, the patients are
either treated, or they are passed up the tree to the parent node.

Close to 90% of the L1 data cache misses are involved in the linked-list traversals in
the two functions addList() and
check patients waiting(). Very few misses result from the traversal of the quad-tree. This
is not surprising as the quad-tree is actually rather small, is created in traversal order, and
remains unchanged during the execution of the program. The patient lists are modified
frequently, and thus are doubly linked (contain both a back and forward pointer) to make
the insertion and deletion of patients (nodes) easier. The linked-list node definitions
are given in Figure 5. The list traversals are performed in a pointer-chasing manner,
and should benefit significantly from the content-based prefetcher. But, the List node
structure may limit this benefit somewhat. By being doubly linked, the back pointer will
cause prefetches to be issued for the previous node visited, a prefetch for a data item that
is obviously still resident in the cache. This will create memory system overhead that
can not provide any cache performance benefit. These back pointers will also lead the
prefetcher to recursively issue prefetches in reverse traversal order. This further increases
the memory overhead dedicated to prefetches which will be of no benefit, and may affect
the timeliness of useful prefetches.
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struct Patient {
int hosps visited;
int time;
int time left;
struct Village *home village;

}

(a) Patient data structure

struct List {
struct Patient *patient;
struct List *back;
struct List *forward;

}

(b) List data structure

Fig. 5. Health data structure definitions.

Also a problem is the ordering of the pointers in the List node structure. The back
pointer is placed ahead of the forward pointer. During the prefetcher’s recursive scan
stage, the prefetch request initiated as a result of detecting the back pointer will be
issued before the forward initiated prefetch request. This “backward” prefetch is for
the node just visited during the traversal, which is a wasted prefetch for a node that
is already in the cache. Further, it occupies memory system bandwidth, delaying the
“forward” prefetch. A simple experiment was performed to see if such pointer ordering
would affect the performance of the content-based prefetcher. From Table 3 (page 39),
we see the L1 data cache base miss rate for health is 26.78%. Quite high, which should
provide ample opportunity for the content-based prefetcher to improve the memory
system performance. Using the back - forward pointer ordering shown in Figure 5, the
prefetcher was able to reduce the L1 data cache miss rate to 12.05%. A significant
improvement. Swapping the back - forward pointer ordering resulted in a L1 data cache
miss rate of 11.58%. This would indicate that the content-based prefetcher is sensitive
to the pointer ordering, an area where compiler support could be beneficial.

Perimeter. The program perimeter computes the perimeter of a set of quad-tree encoded
raster images. The encoded raster image is generated at the start of the program. As the
individual nodes of the tree are allocated, each node is assigned one of three colors:
white, black, or grey. In practice only two of these colors are assigned. The leaf nodes of
the tree are designated as being black, and all non-leaf nodes are tagged as being grey.
Once this raster image (quad-tree) is generated it is never modified, and is only traversed
in a predetermined order. The definition of a tree node is given in Figure 6.

Two observations should be made at this point. First, perimeter already exhibits
good cache performance without prefetching. The L1 cache miss rate is just under 4.5%.
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typedef struct quad struct {
Color color;
ChildType childtype;
struct quad struct *nw;
struct quad struct *ne;
struct quad struct *sw;
struct quad struct *se;
struct quad struct *parent;

}

Fig. 6. Perimeter quad-tree node definition.

So like bisort, minimal opportunity is provided for the prefetcher to increase the cache
performance. Second, the quad-tree is generated in traversal order which results in the tree
residing contiguously in memory in traversal order. From a stride prefetcher perspective,
this effectively changes the memory access pattern to that of an array traversal.

The quad-tree’s initial traversal during allocation should give a stride prefetcher the
needed training to start predicting addresses. During the tree traversal when the perimeter
is calculated, the stride prefetcher will be seeing the memory access reference pattern
for the second time, allowing prefetch requests to be generated. Thus a stride prefetcher
should be able to lower the L1 data cache miss rate.

The content prefetcher may not be able to provide such an increase. Perimeter, like
bisort, highlights some of the problems seen when trying to prefetch nodes within a
tree-based data structure. The main problem is the quad-tree structure (see Figure 6).
Each node of the tree contains five pointers: four child node pointers and a parent node
pointer. Each node of the tree requires 48 bytes, which the memory allocator expands
to 64 bytes. The result is the tree node byte count equals the cache line byte count of
the cache simulators used in this paper. The recursive scan feature of the content-based
prefetcher (see Section 2.4, page 36) will issue prefetch requests for all five pointers,
including the parent pointer. The tree is traversed in an in-order fashion: nw, ne, sw,
and se. While the prefetcher is taking a more breadth-first approach to prefetching, the
tree traversal is more characteristic of a depth-first traversal. This results in prefetch
requests being generated long before they would possibly be used. With a fixed-sized
prefetch buffer, these untimely but useful prefetches will most likely get replaced prior
to being beneficial. The high branching factor of the quad-tree (versus a binary tree)
only makes the problem more pronounced. The parent node prefetch requests cause a
separate problem in that they will occupy memory system overhead prefetching data
(nodes) that already resides in the cache. So the combination of a small a priori L1 data
cache miss rate, the quad-tree structure, and the constant in-order traversal of the tree
structure, the content-based prefetcher will most likely only provide a small performance
improvement.
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3.3 Summary

A perusal of the related work section will show that the Olden benchmark suite has
become the standard set of applications to be used when evaluating a prefetch mechanism
that attacks the pointer-chasing problem. These benchmarks do allocate and access a
large number of dynamic data structures, but as discussed in several earlier sections, the
majority of these structures are immutable, and are accessed in an array-like manner.
So while all of them are indeed pointer-intensive applications, not all them exhibit what
would be considered “traditional” pointer-intensive characteristics.

4 Preliminary Results

4.1 Metrics

Traditionally coverage and accuracy have been used to measure the “goodness” of a
prefetch mechanism. While the authors of [27] argue that such metrics may be deceiving
as they do not provide a direct indication of performance, they are sufficient for purposes
of this paper. In this paper we will be using the coverage and accuracy definitions provided
in [27].

Prefetch coverage is a measure of the cache performance gains that the prefetcher
provides, and is defined as the percentage of cache misses eliminated by the prefetcher.
This is shown in Equation(4).

coverage = prefetch hits / misses without prefetching (1)

Prefetch accuracy estimates the quality of the prefetching algorithm, and is defined as
the percentage of prefetch requests that were useful (they matched a future load). This
is shown in Equation(5).

accuray = useful prefetches / number of prefetches generated (2)

A third metric that is used in this paper is miss rates. While miss rates are not the best
metric (they do not reflect the timeliness of the prefetches), for the simple memory
model which is not a cycle accurate model, miss rates can be used as a measure of the
prefetcher’s performance.

4.2 Simple Memory Model

For the initial investigation of content-based prefetching, a simple two-level cache sim-
ulation tool was developed using ATOM [28]. This cache hierarchy contains separate
L1 data and instruction caches, and a unified L2 cache. TLBs are maintained for both
the instruction and data L1 caches, with a shadow TLB assisting with the content-based
prefetch address prediction. The L1 caches are 8KB 2-way set associative with 64 byte
lines; the unified L2 cache is a 1MB 4-way set associative with 64 byte lines. We ex-
plicitly use small caches because the workloads tend to have a small working set size.
The parameters for the various components of the memory model are shown in Table 4.

The timing for the memory model is simple, and does not model any contention
points (e.g. busses). Instructions and memory references complete in one cycle. When
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Table 4. Simple memory model cache simulation parameters.

Caches
Component Capacity Block Size Assoc.

IL1 8KB 64 bytes 2-way set
DL1 8KB 64 bytes 2-way set
UL2 1MB 64 bytes 4-way set

TLBs
Component Entries Page Size Assoc.

ITLB 64 8KB fully
DTLB 64 8KB fully
STLB 1024 8KB direct

prefetching is enabled, a queue is used to store the outstanding prefetch request. Each
cycle the first request in the prefetch request queue is moved to the prefetch buffer,
providing a prefetch request throttling mechanism. When content-based prefetching
is enabled, recursive content scans are performed prior to moving a request from the
prefetch request queue to the prefetch buffer. The memory model also contains a stride
prefetcher, but because of the simplistic timing model, it does not utilize a look-ahead
program counter. Stride generated prefetch requests are also queued and use the same
throttling mechanism, the difference being the stride prefetcher does not perform recur-
sive cache line scans. It should be noted that this simulator does not include a processor
model, but instead uses a straight in-order fetch-execute cycle.

4.3 Synthetic Benchmark

The synthetic benchmark by design should benefit greatly from the content-based pre-
fetcher. While the data structure is defined as a random graph, the individual path traver-
sals through the graph can be viewed as traversals of random linked-lists. With the
simplified memory model allowing prefetches to be available one cycle after being is-
sued, the content-based prefetcher should be able to eliminate all the base case (no
prefetching) L1 data cache misses.

The prefetch coverage and accuracy measurements for the content-based prefetcher
when executing the synthetic benchmark are shown in Table 5. The prefetch coverage
is quite high, almost 97%, showing that the prefetcher is eliminating the majority of the
L1 data cache misses that occur when no prefetching is used. The result of this high
coverage can be seen in Table 6, where the L1 data cache miss rate drops from the base
miss rate of over 66%, to just over 2%.

Table 5. Content-based prefetcher coverage and accuracy measurements when executing the syn-
thetic benchmark.

Load Misses Load Misses Predictions Good Coverage Accuracy
Benchmark w/o PF with PF Made Predictions % %

synthetic 37,238,406 1,152,641 315,104,010 36,085,765 96.90 11.45
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Table 6. L1 data cache miss rates when executing the synthetic benchmark.

Loads Baseline Stride Content
Benchmark Executed Misses Miss % Misses Miss % Misses Miss %

synthetic 56,032,887 37,238,406 66.46 36,928,423 65.90 1,152,641 2.06

Remember that the synthetic benchmark ends each path after traversing 50 nodes,
starting a new path at a random node in the graph. This graph is many times larger than
the L1 data cache, so there is a large probability that the new path’s starting node will
result in an L1 data cache miss. These misses can not be eliminated by the prefetcher,
and rely solely on locality for cache hits. Thus every 50th node reference, or 2% of the
node references, have a high probability of incurring a cache miss. The L1 data cache
miss rate with the content-based prefetcher enabled is 2%. This implies that the content-
based prefetcher is eliminating all the possible cache misses along each path, with the
exception of the first node in each path.

While the content-based prefetcher achieves a high coverage percentage, it’s accuracy
is quite low at 11.45%. This indicates that a large majority of the prefetches initiated
by the content-based prefetcher are not useful. This is somewhat expected for several
reasons. First, the content-based prefetcher also incorporates a next-line prefetcher. For
every address that is predicted, and a prefetch request generated, the same is done for
the next cache line following the predicted address. For the synthetic benchmark where
each node in the graph occupies a complete cache line, and the paths are random, next-
line prefetching provides no benefit. So at least half of the prefetch requests will not be
useful. Second, unlike a stride prefetcher which is able to perform a tag lookup in the
L1 data cache and prefetch buffer prior to initiating a new prefetch, the content-based
prefetcher will be initiating prefetches for cache lines that are already resident in either
the L1 data cache or the prefetch buffer. So while these prefetch requests are correct,
they are not useful, and have needlessly occupied memory bandwidth. This highlights
the need for a feedback mechanism to help in filtering prefetch requests.

4.4 Olden Benchmarks

In Section 3, the workload analysis of the Olden benchmarks concluded that the only
benchmark that could benefit from using the content-based prefetcher would be health.
The results from running the benchmarks using the simple memory model proves this
to be true. A look at Tables 7 and 8 show that the L1 data cache miss rate for health is
significantly reduced, achieving a prefetch coverage of 55%. The remaining three bench-
marks have prefetch coverage ranging from 10% to 23%. The tree-based applications,
bisort and perimeter benefit from temporal locality of the recursive calls near the tree leaf
nodes when traversing the trees. The large branching factor of perimeter keeps it from
achieving the same prefetch coverage of bisort. While most of the linked-list accesses in
em3d are performed in an array-like fashion, em3d does benefit from the content-based
prefetching of future instances of nodes in the “backbone” tree data structure.

While perimeter is defined as a pointer-intensive application, the stride prefetcher
performed considerably better than the content-based prefetcher. This is an obvious indi-
cation of regularity in the memory reference stream. The workload analysis of perimeter
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Table 7. Olden benchmark coverage and accuracy.

Load Misses Load Misses Predictions Good Coverage Accuracy
Benchmark w/o PF with PF Made Predictions % %

bisort 3,198,387 2,460,219 556,145,424 5,259,635 23.08 0.95
em3d 38,762,235 31,668,436 2,104,177,098 24,370,120 18.30 1.16
health 18,836,688 8,476,011 647,730,592 10,391,124 55.00 1.60

perimeter 5,603,401 5,013,004 688,412,386 5,603,401 10.53 0.82

Table 8. Olden benchmark L1 data cache miss rates.

Loads Baseline Stride Content
Benchmark Executed Misses Miss % Misses Miss % Misses Miss %

bisort 93,217,887 3,198,387 3.43 2,761,909 2.96 2,460,219 2.64
em3d 263,623,159 38,762,235 14.70 30,621,473 11.62 31,668,436 12.01
health 70,347,560 18,836,688 26.78 18,170,315 25.83 8,476,011 12.05

perimeter 126,128,928 5,603,401 4.44 1,981,680 1.57 5,013,004 3.97

showed that the tree structure used in perimeter was contiguous in memory in traversal
order and remained unchanged for the duration of the program’s execution, characteris-
tics that a stride prefetcher should be able to exploit. Table 8 shows the stride prefetcher
was indeed able to take advantage of this regularity, attaining a prefetch coverage of over
64%.

Of concern are the extremely low prefetch accuracies. The numbers indicate that
the content-based prefetcher is issuing 100 “bad” prefetch requests for each “good”
request. This is not a problem in the simplified timing model, but in a cycle-accurate
memory model that includes resource contention, the large memory system overhead
introduced by these useless prefetches will have to impact the timeliness of the useful
prefetch requests. These low prefetch accuracies further highlight the need for a filtering
mechanism to remove as many of the useless prefetches as possible.

4.5 Prefetch Distances

Although the timing model used in this initial investigation is simplistic, it is interesting
to examine the prefetch distance (the time from when a prefetch is issued to when
the item is used), shown for both stride and content-based prefetchers in Figure 7 .
Stride prefetchers tend to have a long prefetch distance while the content prefetcher
tends to have a shorter prefetch distance. This implies that very little computational
work is available to mask the content-based prefetches. Intuitively this makes sense as
most programs immediately use a pointer once it has been loaded. The problems that
such small distances introduce is a continuous theme through the relevant prior art. An
observation is that the content-based prefetcher must be allowed to run ahead of the
current program counter if is to improve the memory system performance
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The differences in prediction-usage distances between stride and content-based
prefetching imply that each prefetcher is making different predictions. This would indi-
cate that there is an opportunity to combine both prefetchers for better overall prediction
performance.
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Fig. 7. Address Prediction-Usage Distances. Each graph displays a cumulative histogram of the dis-
tance, measured in instructions, between when a prefetch request is generated, and the prefetched
datum is used.
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5 Related Work

A large volume of work has been generated in the areas of software [3] and hardware
prefetching, including both data prefetching [7] and instruction prefetching [9]. The fol-
lowing subsections present a survey of software, hardware, and hybrid data prefetching
mechanisms. While the survey is biased towards prefetchers that target pointer inten-
sive applications, it is not limited to only those mechanism that attack the pointer-load
problem.

5.1 Software Based Prefetching

While the following subsections describe several software-based mechanisms for imple-
menting data prefetching, it should be noted that software-controlled prefetching does
require support from the hardware. The instruction set architecture (ISA) for the pro-
cessor must provide a prefetch instruction. The software uses this instruction to issue
a data request to the memory subsystem. The caches must be lock-up free [13], which
allows the cache memory to have multiple outstanding misses. The program can then
continue executing while the memory system retrieves the specified datum, assuming
the application does not need the requested data.

Sequential Predictors. Mowry et al. [18] presented a general method of hiding the
latency of a load by scheduling a matching speculative non-faulting prefetch load in
advance of the demand load. Their algorithm is selective in that it identifies those load
references that are likely to result in a cache miss, and inserts prefetch instructions only
for them. The outstanding prefetch requests were queued in a prefetch issue buffer. This
algorithm is intended for applications that operate on dense matrices.

Recursive Data Structures. Luk and Mowry [15,16] proposed and evaluated three com-
piler algorithms for scheduling prefetches for recursive data structures (RDS): greedy
prefetching, history-pointer prefetching, and data-linearization prefetching. Of these
three algorithms, only the greedy algorithm was implemented in the SUIF optimizing
research compiler. History-pointer prefetching and data-linearization prefetching were
evaluated using hand optimized code.

The greedy algorithm uses type information to detect which objects belong to a re-
cursive data structure, and control structure information to recognize when these objects
are being traversed. Once an RDS object has been found, and a likely control struc-
ture that contains an RDS traversal has been located, the greedy algorithm will insert
prefetches of all pointers within the object that point to other nodes of the RDS. This
insertion will be made at the the earliest point where these addresses are available within
the surrounding control structure.

History-pointer prefetching creates new jump-pointers (history-pointers) within an
RDS. These history-pointers contain observed values of recent traversals of the RDS.
The history-pointers are constructed using a FIFO queue which holds pointers to the
last n nodes that have been visited, where n is set to equal the prefetch distance. The
history-pointer for the oldest node in the queue is set to the current node.
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Data-linearization prefetching attempts to map heap-allocated nodes that are likely
to be accessed close together (such as traversal order in the case of a binary-tree) into
contiguous memory locations. The benefit is that the RDS can now be seen as an array-
like structure, allowing next node pointers to be computed instead of dereferenced. This
method only works well for RDSs that are fairly constant once created, as the process
of dynamically remapping the RDS may result in large runtime overheads.

SPAID. Lipasti et al. [14] proposed the SPAID (Speculatively Prefetching Antici-
pated Interprocedural Dereferences) heuristic, a compiler-based prefetching scheme for
pointer-intensive and call-intensive applications. SPAID is based on the premise that
procedures are likely to dereference any pointer passed to them as arguments. SPAID
therefore inserts prefetches for the objects pointed to by these pointer arguments at the
call sites. This method defines the prefetch distance to be the start of procedure and the
dereference of the passed pointer. Thus the prefetches are only effective if this distance
is comparable to the cache load miss latency.

5.2 Hardware Based Prefetching

Stride Prefetcher. Stride-based prefetchers take advantage of regularities in the data
memory reference stream. In [6], Chen and Baer proposed a hardware prefetcher that
monitors the stride between successive memory references of load instructions. The
reference prediction table (RPT), a cache whose entries are tagged with the instruction
address of load instructions, detects strides by keeping a history of distances between
subsequent load effective addresses. To allow the RPT to issue prefetch requests in a
timely manner, a look-ahead program counter (LAPC) is utilized to engage the prefetcher
in advance of the processor’s regular program counter.

Tango. Pinter and Yoaz [21] introduce Tango, a prefetching mechanism that leverages
the effective utilization of slack time and hardware resources not being used by the main
computation. The Tango prefetcher is comprised of four hardware components. The
program progress graph (PPG) is a directed graph where nodes correspond to a branch
instruction and edges to a block of instructions on the path between the two corresponding
branch instructions. A reference prediction table for superscalar processors (SRPT)
stores the access history information of the memory reference instructions. The pre-PC
and PC are set equal at the start of the program and following any mispredicted branches.
Using the information in the PPG, the pre-PC is capable of advancing to the next block
in one cycle. The prefetch request controller (PRC) controls the scheduling of the data
prefetch requests. A unique feature of the PRC is a queue which contains previous data
cache accesses that hit. By examining this queue, the PRC is able to detect redundant
prefetches without consuming any of the data cache’s tag-port bandwidth.

Stream Prefetcher. Jouppi [11] introduced stream buffers as a method to improve the per-
formance of direct-mapped caches. Stream buffers prefetch sequential streams of cache
lines, doing this independently of the program context. Stream buffers are implemented
as FIFO buffers that prefetch succeeding cache lines, starting with a missed cache line.
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The stream buffers presented in [11] do have a limitation in that they can only detect
streams which contain unit strides.

Palacharla and Kessler [20] addressed this limitation by extended the stream buffer
mechanism to detect non-unit strides, along with introducing a noise rejection scheme to
improve the accuracy of the stream buffers. This filtering mechanism is simple in that it
will wait for two consecutive misses to a sequential cache line address before allocating
a stream buffer.

Farkas et al. [8] enhanced stream buffers by augmenting them with an associative
lookup capability and a mechanism for detecting and eliminating the allocation of stream
buffers to duplicate streams.

Sherwood et al. [26] introduced predictor-directed stream buffers, which improved
the stream buffer’s performance in pointer-base applications, using a stride-filtered
Markov address predictor to guide the stream buffer prefetching.

Correlation-Based Prefetchers. The first instance of correlation-based prefetching be-
ing applied to data prefetching is presented in a patent application by Pomerene and
Puzak [22]. A hardware cache is used to hold the parent-child information. A further
innovation they introduce is to incorporate other information into the parent key. They
suggest the use of bits from the instruction causing the miss, and also bits from the
last data address referenced. They also introduce a confirmation mechanism that only
activates new pairs when data that would have been prefetched would also have been
used. This mechanism is very much like the allocation filters introduced by Palacharla
et.al. [20] to improve the accuracy of stream buffers and serves a similar purpose here.

Charney and Reeves [5] extended the Pomerene and Puzak mechanism and applied
it to the L1 miss reference stream rather than directly to the load/store stream. They
improved upon the previous mechanism by introducing a FIFO history buffer which
allowed a greater lead time for the prefetches. Instead of entering parent-child pairs into
the pair cache, ancestors older than the parent can be paired with the child and entered
in the pair cache. Another important contribution by Charney and Reeves was to show
that stride based prefetching could be combined with correlation based prefetching to
provide significant improvements in prefetch coverage over using either approach alone,
on certain benchmarks.

Alexander and Kedem [1] proposed a mechanism similar to correlation-based prefetch-
ing but used a distributed prediction table. In their variation, a correlation-based table
was used to predict bit-line accesses in an Enhanced DRAM, and was used to prefetch
individual bit lines from the DRAM to the SRAM array.

Joseph and Grunwald [10] use a Markov model to predict future memory references.
The model is implemented in hardware as a prediction table, and allows multiple, prior-
itized prefetch requests to be launched. The prefetcher is designed to act as an interface
between the on-chip and off-chip cache, and can be added to most existing computer
designs.

Recurrence Recognition. Mehrotra and Harrison [17] contribute a memory access clas-
sification scheme that represents address sequences as recurrent patterns. They then
exploit this scheme to extend the RPT described in [6] to allow it to capture memory
reference patterns associated with recursive data structures.
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Dependence-Based. Roth et al. [24] proposed a dependence-based prefetching mecha-
nism that dynamically captures the traversal behavior of linked data structures (LDS).
The dependence-based prefetcher works by matching producer-consumer instruction
pairs. A producer being a load whose value is an address, and a consumer being a
load that uses that value (address) as its base address. The prefetch mechanism uses
three hardware components. The potential producer window (PPW) is a list of the most
recent loaded values and the corresponding load instruction. Producer-consumer pairs
are recorded in the correlations table (CT). The collection of producer-consumer pairs
residing in the CT define the traversal kernel for the LDS. Prefetch requests are en-
queued onto a prefetch request queue (PRQ). The PRQ buffers prefetch requests until
data ports are available to service them. One drawback to this approach is that is does
limit prefetching to a single instance ahead of a given load.

Jump-Pointers. In [25], Roth and Sohi investigate the use of jump-pointers [15] to
prefetch LDSs that contain backbone and backbone-and-ribs structures. A backbone
LDS contains only one type of node, and is connected in a recursive manner (e.g. list,
tree, graph). A backbone-and-ribs LDS contains secondary structures at each of the
primary structure nodes (e.g. a linked-list at each node of a tree).

Roth and Sohi combined two prefetching techniques, jump-pointer prefetching and
chained prefetching (using only the original pointers found in the structure), to form four
prefetching idioms: queue, full, chain, and root jumping. Queue jumping is applied to
backbone structures, and adds jump-pointers to each node of the structure. Full jumping
adds only jump-pointers to backbone-and-ribs structures. Chain jumping adds jump-
pointer prefetches to the backbone, and chained prefetches to the ribs. Root jumping
uses only chained prefetches.

5.3 Hybrid Prefetching

Push Model. Yang and Lebeck [29] describe a push model of generating prefetch re-
quests for linked data structures (LDS). In most prefetch mechanisms, the prefetch
request originates at the upper, or CPU level of the memory hierarchy. The request then
propagates down the memory chain until it can be satisfied, and then traverses back up to
the level where the prefetch request was initiated. In the push model, prefetch engines are
attached to each level of the memory hierarchy and “push” prefetched data towards the
upper levels. This eliminates the request from the upper levels to the lower level, which
can dramatically reduce the memory latency of the prefetch request. This should allow
for the overlapping of data transfers from node-to-node within a linked data structure.

The prefetch engines are very similar to the prefetch mechanism described in [24].
They are designed to execute traversal kernels which are down-loaded to the prefetch
engine via a memory-mapped interface. The root address of the LDSs are conveyed
to the prefetch engines using a special “flavored” load instruction. Upon seeing such a
load, the prefetch engines begin executing the previously downloaded traversal kernel
independent of the program execution.

Memory-Controller Based. Zhang et al. [30] present a memory-controller based prefetch-
ing mechanism, where data prefetching of linked data structures originate at the memory
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controller. The mechanism they propose is implemented using the Impulse Adaptable
Memory Controller system. The memory controller is under the control of the operating
system, which provides an interface for the application to specify optimizations for par-
ticular data structures. The programmer, or compiler, inserts directives into the program
code to configure the memory controller.

Prefetch Arrays. Karlsson et al. [12] extend the jump-pointer prefetching discussed
in [15,25] by including arrays of jump-pointers, a prefetch array, at the start of recursive
structure nodes. The premise is to aggressively prefetch all possible nodes of a LDS
several iterations prior to their use. To ameliorate the overhead of issuing blocks of
prefetches, the ISA is extended to include a block prefetch operation.

6 Conclusions and Future Work

The current improvements with content-based prefetching are promising. We are ex-
perimenting with a number of prioritization and control mechanisms to increase the
prefetch accuracy. Content-based prefetching is intended to be used in conjunction with
other prefetching mechanisms, such as stride or stream prefetching. This paper explored
each prefetcher in isolation, but the difference in the prefetch distance clearly shows that
each has unique advantages.

Once we better understand how content-based prefetchers behave, we intend to
examine this prefetching mechanism in more depth using a cycle-accurate timing model.
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Abstract. The effectiveness of cache-based memory hierarchies depends
on the presence of spatial and temporal locality in applications. Memory
accesses of many important applications have predictable behavior but
poor locality. As a result, the performance of these applications suffers
from the increasing gap between processor and memory performance.
In this paper, we describe a novel mechanism provided by the Impulse
memory controller called Dynamic Cache Line Assembly that can be
used by applications to improve memory performance. This mechanism
allows applications to gather on-the-fly data spread through memory into
contiguous cache lines, which creates spatial data locality where none
exists naturally. We have used dynamic cache line assembly to optimize
a random access loop and an implementation of Fast Fourier Transform
(FFTW). Detailed simulation results show that the use of dynamic cache
line assembly improves the performance of these benchmarks by up to a
factor of 3.2 and 1.4, respectively.

1 Introduction

The performance gap between processors and memory is widening at a rapid rate.
Processor clock rates have been increasing 60% per year, while DRAM latencies
have been decreasing only 7% per year. Computer architects have developed a
variety of mechanisms to bridge this performance gap including out-of-order ex-
ecution, non-blocking multi-level caches, speculative loads, prefetching, cache-
conscious data/computation transformation, moving computation to DRAM
chips, and memory request reordering. Many of these mechanisms achieve re-
markable success for some applications, but none are particularly effective for
irregular applications with poor spatial or temporal locality. For example, no
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systems based on conventional microprocessors can handle the following loop
efficiently if the array A is sufficiently large:

float A[SIZE];
for (i = 0; i < itcount; i++) {

sum += A[random()%SIZE];
}

We are developing a memory system called Impulse that lets applications
control how, when, and what data is placed in the processor cache [2]. We do
this by adding an optional extra level of physical-to-physical address translation
at the main memory controller (MMC). This extra level of translation enables
optimizations such as “gathering” sparse data into dense cache lines, no-copy
page coloring, and no-copy superpage creation. In this paper, we describe a
new mechanism called dynamic cache line assembly that we are considering for
Impulse. This mechanism allows applications to request that a cache line be
loaded on-the-fly with data from disjoint parts of memory. Applications that
can determine the addresses that they will access in the near future can request
that data from those addresses be fetched from memory. This mechanism lets
applications create spatial locality where none exists naturally and works in
situations where prefetching would fail due to bandwidth constraints. Simulation
indicates that dynamic cache line assembly improves the performance of the
random access loop above by a factor of 3.2 and the performance of the dominant
phase of FFTW by a factor of 2.6 to 3.4.

The rest of the paper is organized as follows. Section 3 briefly describes the
basic technology of Impulse. Section 4 presents the design details of dynamic
cache line assembly. Section 5 studies the performance evaluation of the pro-
posed mechanism. And finally, Section 6 discusses future work and concludes
this paper.

2 Related Work

Much work has been done to increase the spatial and temporal locality of regular
applications using static analysis. Compiler techniques such as loop transforma-
tions [1] and data transformations [3] have been useful in improving memory
locality of applications. However, these methods are not well suited to tackle the
locality problem in irregular applications where the locality characteristics are
not known at compile time.

A hybrid hardware/software approach to improving locality proposed by Ya-
mada et al. [12] involves memory hierarchy and instruction set changes to sup-
port combined data relocation and prefetching into the L1 cache. Their solution
uses a separate relocation buffer to translate array elements’ virtual addresses
into the virtual relocation buffer space. The compiler inserts code to initiate
the remapping, and it replaces the original array references with corresponding
relocation buffer references. However, this approach can only relocate strided
array references. Also, it saves no bus bandwidth because it performs relocation
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at the processor. Contention for cache and TLB ports could be greatly increased
because the collecting procedure of each relocated cache line must access the
cache and CPU/MMU multiple times. This approach is also not designed for
irregular applications.

There has been some work in developing dynamic techniques for improving
locality. Ding and Kennedy [5] introduce the notion of dynamic data packing,
which is a run time optimization that groups data accessed at close intervals in
the program into the same cache line. This optimization is efficient only if the
gathered data is accessed many times to amortize the overhead of packing and if
the access order does not change frequently during execution. DCA setup incurs
much lesser overhead because it does not involve data copying, and it allows
frequent changes to the indirection vector.

To the best of our knowledge, hardware support for general-purpose cache
line gathering such as is supported by DCA is not present in any architecture
other than Cray vector machines. For example, the Cray T3E [10] provides spe-
cial support for single-word load. Sparse data can be gathered into contiguous
E-registers and the resulting blocks of E-registers can then be loaded “broad-
side” into the processor in cache line sized blocks, thus substantially reducing
unnecessary bus bandwidth that would have been used in normal cache line fills.
Dynamic cache line assembly provides similar scatter gather capability for con-
ventional microprocessors without the need for special vector registers, vector
memory operations in the instruction set, or an SRAM main memory.

3 Impulse Architecture

The Impulse adaptable memory system expands the traditional virtual memory
hierarchy by adding address translation hardware to the main memory controller
(MMC) [2, 11, 14]. Impulse uses physical addresses unused in conventional sys-
tems as remapped aliases of real physical addresses. For instance, in a system
with 32-bit physical addresses and one gigabyte of installed DRAM, the physi-
cal addresses inside [0x40000000 – 0xFFFFFFFF] normally would be considered
invalid. 1 Those, otherwise unused, physical addresses refer to a shadow address
space.

Figure 1 shows how addresses are mapped in an Impulse system. The real
physical address space is directly backed up by physical memory; its size is
exactly the size of installed physical memory. The shadow address space does
not directly point to any real physical memory (thus the term shadow) and must
be remapped to real physical addresses through the Impulse MMC. How the
MMC interprets shadow addresses presented to it is configured by the operating
system.

This virtualization of unused physical addresses can provide different views
of data stored in physical memory to programs. For example, it can create cache-
1 It is common to have I/O devices mapped to special “high” addresses. This problem

can be easily avoided by not letting shadow address space overlap with I/O devices
addresses.
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Fig. 1. Address mapping in an Impulse system.

friendly data structures to improve the efficiency of the processor caches. The
operating system manages all of the resources in the expanded memory hierarchy
and provides an interface for the application to specify optimizations for par-
ticular data structures. The programmer (or the compiler) inserts appropriate
system calls into the application code to configure the memory controller.

To map a data item in the shadow address space to the physical memory, the
Impulse MMC must first recover its virtual address. To avoid directly handling
virtual addresses at the MMC, we require that the virtual address must be
located inside a special virtual region. The OS creates a dense, flat page table
in contiguous physical addresses for the special virtual region. We call the page
table the memory controller page table. The OS then pins down this page table
in main memory and sends its starting physical address to the memory controller
so that the MMC can access this page table without interrupting the OS. Since
data items in a shadow region are mapped to a special virtual region, the MMC
only need compute offsets relative to the starting address of the virtual region.
We call such an offset a pseudo-virtual address. For each shadow data item, the
MMC first computes its pseudo-virtual address, then uses the memory controller
page table to determine the data item’s real physical address. To speed up the
translation from pseudo-virtual to physical addresses, the MMC uses an TLB to
store recently used translations. We call this TLB the MTLB.

Figure 2 shows a simplified block diagram of the Impulse memory system. The
critical component of the Impulse MMC is the shadow engine, which processes
all shadow accesses. The shadow engine contains a small scatter/gather SRAM
buffer used as a place to scatter/gather cache lines in the shadow address space,
some control registers to store remapping configuration information, an ALU
unit (AddrCalc) to translate shadow addresses to pseudo-virtual addresses, and a
Memory Controller Translation Lookaside Buffer (MTLB) to cache recently used
translations from pseudo-virtual addresses to physical addresses. The control
registers are split into eight different sets and are capable of saving configuration
information for eight different mappings. However, all mappings share the same
ALU unit and the same MTLB.
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4 Design

The proposed dynamic cache line assembly mechanism is an extension of Im-
pulse’s scatter/gather through an indirection vector remapping mechanism. Its
main goal is to enable applications to access data spread through memory as
if it were stored sequentially. In this section, we first talk about scatter/gather
through an indirection vector, then describe the design of dynamic cache line
assembly.

4.1 Scatter/Gather through An Indirection Vector

The Impulse system supports a remapping called scatter/gather through an in-
direction vector. For simplicity, we refer to it as IV remapping throughout the
rest of this paper. IV remapping maps a region of shadow addresses to a data
structure such that a shadow address at offset soffset in the shadow region is
mapped to data item addressed by vector[soffset] in the physical memory.

Figure 3 shows an example of using IV remapping on a sparse matrix-vector
product algorithm. In this example, Pi is an alias array in the shadow ad-
dress space. An element Pi[j] of this array is mapped to element P[ColIdx[j]]
in the physical memory by the Impulse memory controller. For a shadow cache
line containing elements Pi[j], Pi[j+1], . . . , Pi[j+k], the MMC fetches elements
P[ColIdx[j]], P[ColIdx[j+1]], . . . , P[ColIdx[j+k]] one by one from the physical
memory and packs them into a dense cache line.

Figure 4 illustrates the gathering procedure. The shadow engine contains
a one cache line SRAM buffer to store indirection vectors. We call this SRAM
buffer the IV buffer. When the MMC receives a request for a cache line of Pi[], it
loads the corresponding cache line of ColIdx[] into the IV buffer, if the IV buffer
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Pi[j]sum += Data[j] * 

}
b[i] = sum;

;

After remappingOriginal code

for (j = Rows[i]; j < Rows[i+1]; j++)

sum += Data[j] * P[ColIdx[j]];

for (j = Rows[i]; j < Rows[i+1]; j++)

sum = 0;

for (i = 0; i < n; i++) {

b[i] = sum;

sum = 0;

for (i = 0; i < n; i++) {

Pi = AMS_remap(P, ColIdx, n, ...);

}

Fig. 3. Scatter/gather through an indirection vector changes indirect accesses to se-
quential accesses.

AddrCalc

MTLB

IV bufferShadow
 engine

Scatter/gather buf

System Bus

Physical Memory

Cache

Fig. 4. Visualize the gathering procedure through an indirection vector.

does not already contain it. The MMC then can interpret one element of the
indirection vector per cycle. The indirection vector may store virtual addresses,
array indices, or even real physical addresses. What it stores (addresses or in-
dices) is specified when the remapping is configured; without loss of generality,
we will refer to the contents of the IV buffer generically as “addresses” through-
out the rest of this paper. If the IV buffer stores virtual address or array indices,
the MMC passes each entry to the AddrCalc unit to generate a pseudo-virtual
address and translates the pseudo-virtual address to a physical address using the
MTLB. Once the MMC has a physical address for a data element, it uses this
address to access physical memory. When a data item returns, it is packed into
a dense cache line in the scatter/gather buffer.

By mapping sparse, indirectly addressed data items into packed cache lines,
scatter/gather through an indirection vector enables applications to replace indi-
rect accesses with sequential accesses. As a result, applications reduce their bus
bandwidth consumption, the cache footprint of their data, and the number of
memory loads they must issue.

A naive implementation of IV remapping requires that the indirection vector
exists in the program and its number of elements be the same as the number of
data items being gathered, e.g., Rows[n] in Figure 3. We extend IV remapping to
implement dynamic cache line assembly, which can be used by programs where
no indirection vector exists naturally and where the size of an indirection vector
need not be equal to the number of data items being gathered.
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4.2 Dynamic Cache Line Assembly

The basic idea of dynamic cache line assembly is to create indirection vec-
tors dynamically during program execution and to access them using Impulse’s
IV remapping mechanism. The indirection vectors typically are small, usually
smaller than a page. We choose small indirection vectors because accessing them
and the resulting small alias arrays leaves a very small footprint in the cache.
The small indirection vectors and alias arrays can be reused to remap large data
structures.

To use DCA, the application performs a system call to allocate two special
ranges of shadow addresses and have the operating system map new virtual
addresses to these two ranges. The first range is used to store the addresses
from which the application wishes to load data (we call this the address region),
while the second range is used to store the requested data (we call this the data
region). The number of addresses that can be stored in the address region is the
same as the number of data items that can be stored in the data region. There
is a one-to-one mapping between elements of the two ranges: the ith element
of the address region is the address of the ith element of the data region. The
operating system also allocates a contiguous real physical memory to back up
the address region in case an indirection vector is forced out of the IV buffer
before the MMC has finished using it.

After setting up the regions, the operating system informs the MMC of their
location, as well as the size of each address and the size of the object that needs
to be loaded from each address. For simplicity, we currently require that both
the address and data regions are a multiple of a cache line size, and that the
data objects are a power of two bytes.

After setup, the application can exploit dynamic cache line assembly by fill-
ing a cache line in the address region with a set of addresses and writing it back
to memory through a cache flush operation. When the MMC sees and recognizes
this write-back, it stores the write-back cache line into both the IV buffer and
the memory. Storing the write-back into the memory is necessary because the IV
buffer may be used by another writeback. When the MMC receives a load request
for a cache line in the data region, it checks to see if the IV buffer contains the
corresponding cache line in the address region. If the required cache line is not
in the IV buffer, the shadow engine loads it from memory. The MMC then inter-
prets the contents of the IV buffer as a set of addresses, passes these addresses
through the AddrCalc unit and the MTLB to generate the corresponding physi-
cal addresses, fetches data from these physical addresses, and stores the fetched
data densely into the scatter/gather buffer inside the shadow engine. After an
entire cache line has been packed, the MMC supplies it to the system bus from
the scatter/gather buffer.

Figure 5 shows how dynamic cache line assembly can be used to improve the
performance of the random access loop presented in Section 1. In this example,
we assume that L2 cache lines are 128 bytes, so each cache line can hold 32
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float *aliasarray;

int *idxvector;

/* aliasarray[i] <== A[idxvector[i]] */

setup_call(A, SIZE, 32, &aliasarray, &idxvector);

for (i = 0; i < itcount/32; i++) {

for (k = 0; k < 32; k++)

idxvector[k] = & (A[random()%SIZE]);

flush_cache line(idxvector);

memory_barrier();

for (k = 0; k < 32; k++)

sum += aliasarray[k];

purge_cache line(aliasarray);

}

Fig. 5. Using dynamic cache line assembly on the random access loop

addresses or 32 floats2. The program first allocates a 32-element address region
idxvector and a 32-element data region aliasarray through the system call
setup call(). In each iteration, the application fills a cache line’s worth of the
address region with addresses, flushes it, and then reads from the corresponding
shadow data region to access the data. Traditional microprocessors with out-
of-order execution usually give reads higher priority than writes, so the read
request for the data may be issued before the flush occurs. To ensure this does
not happen, we insert a memory barrier after the flush. Since the same data
region is used in every iteration, the old data in the cache must be invalidated
so that the next fetch will go to the MMC to retrieve the right data.

The main overhead of using dynamic cache line assembly is that the program
must handle the address regions (i.e., indirection vectors) and the MMC must
gather a cache line using multiple DRAM fetches. In this example, filling a cache
line of the indirection vector introduces 32 sequential memory accesses that do
not exist in the original code. Fortunately, those 32 accesses generate only one
cache miss. Accessing a cache line of the data region results in another cache miss.
As a result, the Impulse version has 2 cache misses for every 32 data accesses.
In the original code, however, the same 32 data accesses generate roughly (32
* (1 - sizeof(cache) / sizeof(A)) cache misses when the array A is larger
than the cache. Dynamically gathering a cache line in the MMC is much more
expensive than fetching a single dense region of memory. Consequently, the code
in Figure 5 will be memory-bound because there is a long waiting time in each

2 It is not required that the objects being fetched are the same size as an address. If,
for example, you want to dynamically fetch quad-precision floating point numbers
(16 bytes), each time the application flushes a line of addresses, the MMC will fetch
four cache lines full of data.
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iteration for the MMC packing and returning data. However, its performance
can be improved using unroll-and-jam.

#define PrecomputeAddresses(start, end) \

for (k = start; k < end; k++) \

idxvector[k] = &(A[random()%SIZE]); \

flush_cache line(&(idxvector[start])); \

memory_barrier(); \

prefetch_cache line(&(aliasarray[start]));

#define AccessData(start, end) \

for (l = start; l < end; l++) \

sum += aliasarray[l]; \

purge_cache line(&(aliasarray[start]));

float *aliasarray;

int *idxvector;

/* aliasarray[i] <== A[idxvector[i]] */

setup_call(A, SIZE, 64, &aliasarray, &idxvector);

PrecomputeAddresses(0, 32);

for (i = 0; i < itcount/64 - 1; i++) {

PrecomputeAddresses(32, 64);

AccessData(0, 32);

PrecomputeAddresses(0, 32);

AccessData(32, 64);

}

......

Fig. 6. Using unroll-and-jam with dynamic cache line assembly.

Figure 6 illustrates how unroll-and-jam can be used to improve performance.
By using two cache lines for each of the address and data regions, we can overlap
computation on one line’s worth of data while prefetching the next line, thereby
hiding the long memory latency of dynamic cache line gathering. To support this
optimization, we need to increase the size of the IV buffer to two cache lines.
With software unroll-and-jam, the processor may flush back one cache line of
the address region while the MMC is gathering data from another set of address.
With two cache lines in the IV buffer, the second write-back can be saved in the
buffer instead of being written back to DRAM and then reloaded when needed.
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5 Performance Evaluation

We evaluated the performance of dynamic cache line assembly using execution-
driven simulation. We compared the performance of two benchmarks using dy-
namic cache line assembly with the same benchmarks unmodified. The first
benchmark is the synthetic “random walk” microbenchmark described in Sec-
tion 1. The second benchmark is a three-dimensional FFT [6] program from DIS
benchmark suite [7]. Both benchmarks were compiled using the SPARC SC4.2
compiler with the -xO4 option to produce optimized code.

5.1 Simulation Environment

Our studies use the execution-driven simulator URSIM [13] derived from RSIM [9]
URSIM models a microprocessor close to MIPS R1000 [8] and a split-transaction
MIPS R10000 cluster bus with a snoopy coherence protocol. It also simulates the
Impulse adaptable memory system in great detail. The processor is a four-way,
out-of-order superscalar with a 64-entry instruction window. The D/I unified
TLB is single-cycle, fully associative, software-managed, and has 128 entries.
The instruction cache is assumed to be perfect. The 64-kilobyte L1 data cache
is non-blocking, write-back, virtually indexed, physically tagged, direct-mapped,
and has 32-byte lines and one-cycle latency. The 512-kilobyte L2 data cache is
non-blocking, write-back, physically indexed, physically tagged, two-way asso-
ciative, and has 128-byte lines and eight-cycle latency. The split-transaction bus
multiplexes addresses and data, is eight bytes wide, has a three-cycle arbitration
delay and a one-cycle turn-around time. The system bus, memory controller,
and DRAMs have the same clock rate, which is one third of the CPU clock. The
memory supports critical word first. It returns the critical quad-word for a load
request 16 bus cycles after the corresponding L2 cache miss occurs. The memory
system contains 8 banks, pairs of which share an eight-byte wide bus between
DRAM and the MMC.

The address translation procedure in the shadow engine is fully pipelined. For
each shadow access entering the pipeline, the engine generates the first physical
address four cycles later and one physical address per cycle afterwards, provided
that no MTLB miss occurs. On an MTLB miss, the pipeline is stalled until
the required page table entry has been loaded into the MTLB. The MTLB is
configured to be four-way associative, with 256 entries and a one-memory-cycle
lookup latency.

5.2 Results

The performance results presented here are obtained through complete simula-
tion of the benchmarks, including both kernel and application time, the overhead
of setting up and using dynamic cache line assembly, and the resulting effects
on the memory system.
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Elapsed TLB hit L1 hit L2 hit Miss Memory Speedup
cycles rate rate rate rate latency

Base 196M 73.67% 65.68% 7.76% 26.56% 51 cycles
Impulse 61M 99.97% 93.37% 6.21% 0.42% 113 cycles 3.22

Table 1. Performance results for the microbenchmark.

Microbenchmark In the synthetic microbenchmark, A[] holds one million
elements and two million random accesses are performed. In theory, its cache hit
rate should be the size of the cache divided by the size of A[]. So larger A[] has
smaller cache hit rate and likely yields better performance improvement with
dynamic cache line assembly. We choose A[] to contain one million elements
simply because it is large enough to prove the effectiveness of dynamic cache
line assembly and its simulation can complete in a reasonable amount of time.

Table 1 presents the results of this experiment. The unrolled version of the
microbenchmark shown in Figure 6, which uses DCA, executes 3.2 times faster
than the baseline version. The Impulse version increases the L1 cache hit rate
from 65.68% to 93.37% and reduces the number of accesses that are handled
by the main memory from 26.56% to 0.42%. One nice side effect of dynamic
cache line assembly is the improved TLB performance. The base version of this
benchmark has very bad TLB behavior because the TLB is not big enough to
hold the translations for the entire array A[]. After using dynamic cache line
assembly, the TLB needs at most two entries to hold the translations for the
address and data regions. Table 1 shows that the TLB hit rate has indeed been
greatly improved (from 73.67% to 99.97%).

Average memory latency increases from 51 cycles to 113 cycles, because dy-
namic cache line assembly requires more work than a simple dense cache line fill,
but the improved cache performance overwhelms the effect of the increased mem-
ory latency. The memory latency reported here is the average latency for all load
accesses, excluding prefetch accesses. The average memory latency of prefetch
accesses reaches around 600 cycles due to high MTLB miss rate (82.97%). The
MTLB is configured to be four-way set associative with 256 entries. The sim-
ulated system uses four-kilobyte base page, so the MTLB’s maximum reach is
only one megabyte, much less than the A[], which is four megabytes. In the
real hardware we are building, the MTLB has 1024 entries. We reduced the
MTLB size to 256 entries in our simulations to generate high MTLB miss rates,
while leaving the MTLB larger than the CPU TLB (an important feature of
Impulse [11]). The good performance of dynamic cache line assembly even with
such high MTLB miss rates gives us confidence that our results will hold, and
perhaps even improve, on larger data structures. Despite the high latency of
dynamic cache line assembly, the use of prefetching results in an average latency
of demand requests of 113 cycles. In this microbenchmark, not enough work is
done on each piece of data for prefetching to completely hide the load latency,
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so we still see a high average memory latency. If more work were performed per
data item, the memory latency perceived by the processor would drop.

FFT Fast Fourier Transform(FFT) is generally characterized by poor temporal
and spatial locality. FFTW [6] is a specific implementation of FFT whose self-
optimizing approach lets it outperform most other FFT implementations. We
chose this FFT implementation as our baseline and modified it to use dynamic
cache line assembly.

���������
�����
�����

�����
�����
�����

Y

X

Z

DEPTH
1 L2 CACHE LINE

MEMORY
ACCESSES

Fig. 7. Shows memory access pattern of depth phase and a cache-column

In general, 3D FFTW operates in two phases. The 3D input array is accessed
along x and y axes in the first phase of the computation. In the second phase,
which we call the Depth Phase, data is accessed along the z axis. For large arrays,
row-major array layout causes poor locality when the array is accessed along the
y and z dimensions. The memory performance accesses along the y dimension is
usually acceptable because (1) the preceding the x dimension access load much of
the necessary data into the cache and (2) the amount of data accessed per plane
is usually smaller than the cache. As a result, most y accesses hits in the cache.
However, most z accesses during the depth phase suffer cache misses, which
accounts for 40-70% of total execution time. Accesses along the y-dimension and
z-dimension load into the cache columns of data whose length is the length of
the array dimension being traversed (y or z) and whose width is one cache line.
We call each such block of data a cache column, one of which is highlighted in
Figure 7. Each cache column, once loaded, is reused for as many column accesses
as possible.

For FFTW, array elements are 16 bytes (a pair of double precision floating
point numbers). Eight elements can fit into each 128-byte L2 cache line, so a
single cache column will be able to service as many as seven adjacent column
accesses before a cache miss will occur. However, if a cache column is larger than
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Input Type Elapsed TLB hit L1 hit L2 hit Miss Speedup
Cycles rate rate rate rate Depth Overall

567x61x51 Base 3.1B 98.92% 92.66% 4.97% 2.37%
Impulse 2.2B 99.99% 93.50% 5.50% 1.00% 2.64 1.40

576x57x31 Base 1.8B 99.06% 93.03% 4.90% 2.07%
Impulse 1.2B 99.99% 94.55% 4.42% 1.03% 2.74 1.47

576x7x11 Base 36.5M 99.46% 92.53% 4.70% 2.77%
Impulse 18.6M 99.98% 93.92% 5.48% 0.60% 3.38 2.29

Table 2. Performance results for FFTW benchmark

the L2 cache, which is the case for input arrays with large y or z dimensions,
then almost every access during the depth phase will be a cache miss. The reason
for this is that each cache line in the cache column will be evicted before it can
be reused. For this benchmark, prefetching is ineffective because the amount of
work performed per element is dwarfed by the time required to load a cache
line from memory. Because FFTs of interest are performed on fairly large input
arrays, we evaluated the performance of DCA only for such arrays where the
cache column size exceeds cache sizes. Also, we only consider arrays with large
z dimensions and thus restrict our optimization to the depth phase. This makes
our results conservative, as additional performance benefits could be had by
applying DCA to accesses along the y accesses in the first phase of the FFT.
To reduce simulation overhead, we simulated an 8-kilobyte L1 cache and a 64-
kilobyte 64K L2 cache. For these cache sizes, the height of a cache column to be
at least 512. We arbitrarily chose input’s z dimension value to be 567 and 576.
the x and y dimension sizes also were chosen arbitrarily.

The FFTW library consists of highly optimized code for computing parts
of the transform, called codelets [6]. Every multidimensional FFT is translated
into a series of calls to these codelets. As part of optimizing FFTW to exploit
Impulse’s DCA mechanism, we modified each codelet to create dynamic indirec-
tion vectors pointing at the array elements being accessed by that codelet. As
in the random access benchmark, we unrolled-and-jammed the resulting code
and added prefetching instructions to overlap computation with the DCA oper-
ation. Conventional compiler-directed prefetching or data reordering techniques
will not work because the addresses and strides are input parameters for the
codelets, and thus only known at runtime.

Table 2 presents our results for the FFT benchmark for various input sizes.
DCA improves the performance of the depth phase by 2.64 to 3.48, depending on
the input size. Total application speedup ranged from 1.40 to 2.29. The reason
for these performance improvements can also be seen in Table 2. The use of
DCA reduces the miss rate by more than a factor of two, and TLB performance
improves significantly. The TLB performance improvement is due to the fact
that all DCA accesses are to a small range of addresses, rather than the entire
range of the input array.
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6 Conclusions and Future Work

The development of the dynamic cache line assembly mechanism is still in its
infancy. Future work includes applying it to more applications and further opti-
mizing its performance. We believe the proposed mechanism can be effective for
many applications with poor locality. To confirm this hypothesis, we are evalu-
ating DCA’s potential on a mix of pointer-intensive programs from the Olden
benchmark suite, image processing programs, and irregular scientific application
kernels (Moldyn and NBF).

The performance of dynamic cache line assembly can be improved in a num-
ber of ways. The current implementation loads each cache line of the address
region from the memory before overwriting it with new addresses. If the proces-
sor we modeled had supported for write, no-allocate, such as is possible via the
Alpha 21264 WH64 instruction [4], we could eliminate this unnecessary cache
miss. Along the same lines, without support from the ISA, we must synchro-
nize flushes of the address region and the subsequent accesses of the data region
using memory barriers. A memory barrier serializes accesses before and after it
and can impede the processor access streams. One way to eliminate this effect
would be to extend the ISA with a special “indirection gather” instruction. The
instruction would combine a flush back of the address region with a prefetch of
the corresponding data region.

In conclusion, we believe that as the performance gap between processors
and DRAM grows, a more flexible memory interface will be necessary to hide
memory latency. Simply building larger on-chip caches will not suffice, and will
increase cache access latency. We have begun investigating the potential benefits
of allowing applications to selectively read/write data from/to random locations
in memory efficiently when conventional caching does not suffice. Our initial
experimental results have shown that for applications with poor spatial locality,
such a mechanism can improve performance by a factor of three or more.
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Abstract. Processing-In-Memory (PIM) circumvents the von Neumann
bottleneck by combining logic and memory (typically DRAM) on a single
die. This work examines the memory system parameters for constructing
PIM based parallel computers which are capable of meeting the memory
access demands of complex programs that exhibit low reuse and non uni-
form stride accesses. The analysis uses the Data Intensive Systems (DIS)
benchmark suite to examine these demanding memory access patterns.
The characteristics of such applications are discussed in detail. Simula-
tions demonstrate that PIMs are capable of supporting enough data to be
multicomputer nodes. Additionally, the results show that even data in-
tensive code exhibits a large amount of internal spatial locality. A mobile
thread execution model is presented that takes advantage of the tremen-
dous amount of internal bandwidth available on a given PIM node and
the locality exhibited by the application.

1 Introduction and Motivation

Processing-in-Memory (PIM)[14,13,4] (also known as Intelligent RAM [21], em-
bedded RAM, or merged logic and memory) systems exploit the tremendous
amounts of memory bandwidth available for intra-chip communication, and
therefore circumvent the von Neumann bottleneck, by placing logic and memory
(typically DRAM) on the same die. This technology allows for the construc-
tion of highly distributed systems, but with a very large latency gap between
high speed local memory macro accesses and remote accesses. The construc-
tion of high performance systems incorporating PIMs must successfully exploit
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the bandwidth available for on-chip accesses while simultaneously tolerating very
long remote access latencies. Multi-threading, similar to that used in the Tera[1],
seems the natural method for tolerating remote accesses, however, such a model
does not inherently take advantage of the relatively large amount of quickly ac-
cessed memory available on a PIM node. In fact, the Tera generally requires
about the same amount of persistent state available in the L1 cache of a mod-
ern microprocessor[1], and a typical PIM node is likely to have 3 to 4 orders of
magnitude more memory available.

This paper describes the memory access behavior of several canonical data
intensive applications (that is, applications which exhibit frequent data accesses
in a highly irregular pattern, and low reuse). These applications, which are par-
ticularly difficult for most modern architectures to accommodate, represent sci-
entific problems of significant interest. Thus, the ability to successfully cope
with their requirement will yield tremendous insight beyond the more simplistic
benchmarks used today.

The characterization of these memory workloads is determined using a single
threaded trace generated from actual program execution. This represents the
first step in modeling a multi-threaded system and identifying a simple data-
placement scheme.

This paper is organized as follows: Section 2 describes the benchmarks and
the rational for for choosing the Data Intensive Systems suite. Section 3 provides
an overview of PIM technology and the general assumptions behind the system
simulated. Section 4 enumerates the simulation methodology and describes the
desirable outcome of simulation (that is, the condition of success). Section 5
describes the mechanism for analysis, particularly focusing on the Cumulative
Instruction Probability Density (CIPD), which will indicate the measure of the
degree of success. Section 6 provides the results of experimentation which de-
termine both the size and form of a well constructed working set. Section 7
describes the simulation of a mobile thread model of computation in which a
thread travels throughout the system looking for the data it needs, as well as
the costs and benefits of such a model. Finally, Section 8 contains the conclusions
and a description of future work.

Further details on the experimentation described in this paper, as well as a
complete set of results for all the benchmarks can be found in [18].

2 Benchmarks

This work concentrates on the analysis of the Data Intensive Systems (DIS)
benchmark suite[2,3]. These benchmarks are atypical in that their memory access
patterns exhibit a low degree of reuse and non-linear stride. Thus the focus
will naturally be on the performance of the memory system over that of the
processing elements. Clearly in the case of PIM the interaction between the
demand for data and its supply is the preeminent characteristic under study.
Most benchmark suites, in sharp contrast, are designed to be quickly captured
in a processor’s cache so as to measure raw computation power. This is somewhat
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misleading since the performance of most modern architectures is determined by
that of the memory system.

Early work focused on the performance of the SPEC95[20] integer and float-
ing point benchmarks. The results of those experiments tended to be unenlight-
ening as the memory access patterns were both regular and easily accommodated
by even a small PIM (which has significantly more persistent state than modern
caches). Tests in which the data set sizes were increased did not fare much better
in that the benchmarks themselves tend to use data with a high degree of both
spatial and temporal locality.

Significant research was then undertaking using the oo7 database benchmark[6]
with the underlying implementation by Pedro Diniz at USC’s Information Sci-
ences Institute, which proved significantly more interesting in that it uses more
irregular data structures. Finally, with the release of the DIS suite, which includes
a data management benchmark, a sufficient number of distinct data intensive
applications were available as a coherent benchmark to allow for meaningful
comparison amongst complex applications.

Additional experimentation was performed using a simple Molecular Dynam-
ics simulation[12], which is of significant interest given its highly complex mem-
ory access patterns and IBM’s Blue Gene project which will use PIM technology
for similar protein folding applications. For reasons of brevity, that experimen-
tation will not be summarized here, but can be found in [18].

The DIS suite is composed of the following benchmarks:

– Data Management: implements a simplified object-oriented database with
an R-Tree indexing scheme [11,16]. Three operations are supported: insert,
delete, and query. For the purposes of these experiments, only the query
operation was examined.

– FFT: is a Three Dimensional Fourier Transform which uses the FFTW
library for optimization. This operation could have been included as the
first step in both the Ray Tracing and Method of Moments benchmarks,
however given the code’s relatively common use, it is treated separately.
(Both the Ray Trancing and Method of Moments benchmarks take data
already converted into Fourier space.)

– Method of Moments: represents algorithms which are frequency domain
techniques for computing electro-magnetic scattering from complex objects.
Typical implementations employ direct linear solves, which are highly com-
putation intensive and can only be applied to reasonably low frequency
problems. The faster solvers applied in this benchmark are memory bound
since reuse is extremely low and access patterns exhibit non-uniform stride.
This benchmark is derived from the Boeing implementation of fast iterative
solvers for the Helmholtz equation [8,10,9].

– Image Understanding: attempts to detect and classify objects within a
given image. This implementation requires three phases: morphological fil-
tering, in which a spatial filter is created and applied to remove background
clutter; determination of the region of interest; and feature extraction.
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– Ray Tracing: is a component of Simulated SAR benchmark, and represents
the computational core. This portion of the program consists of sending rays
from a fixed point and determining where they interact with other objects.

3 PIM Technology and Architecture

Modern processors require that tremendous amounts of data be provided by the
system’s memory hierarchy, which, is becoming increasingly difficult to supply.
The core of this problem, known as the von Neumann Bottleneck relates to the
separate development of processing and memory technologies, and the different
emphasis placed on each. Processors, built around logic fabrication processes
which emphasize fast switching, generally follow Moore’s law, while memories
emphasize high density but relatively low data retrieval rates. The intercon-
nection mechanism between the two is a narrow bus which cannot be greatly
expanded due to the physical limit on the number of available pins and high
capacitance of inter-chip communication.

Developments in VLSI technology, such as the trench capacitor compatible
with a logic process developed at IBM, now allow for fabrication facilities which
offer both high performance logic and high density DRAM on the same die. These
PIMs further allow for the creation of much higher bandwidth interconnection
between local memory macros and logic since it all occurs on chip.

Several proposals exist which attempt to fully utilize the potential of these
fabrication developments. The IRAM project [21] at Berkeley seeks to place
a general purpose core with vector capabilities along with DRAM onto a die
for embedded applications. Cellular phones, PDAs, and other devices requiring
processing power and relatively small amounts of memory could benefit tremen-
dously from this type of system, even if one only considers the potential advan-
tages in power consumption. Others, such as members of the Galileo group[5] at
the University of Wisconsin see PIM as having tremendous potential in standard
workstations where the on chip memory macros would become all or part of the
memory hierarchy. More recently, the Stanford Smart Memories project[17] be-
gan exploring the construction of single chip systems capable of supporting a
diverse set of system models.

The DIVA project [13] is currently investigating system and chip level im-
plementations for PIM arrays functioning as part of the memory hierarchy in a
standard workstation. Finally, the HTMT[22,15] project is a multi-institutional
effort to construct a machine capable of reaching a petaflop or above in which a
large part of the memory hierarchy consists of PIMs being designed by the Notre
Dame PIM group. This portion of the memory hierarchy is a huge, two-level,
multi-threaded array.

Figure 1 show a typical single node PIM layout. In the case of the target
ASAP Architecture[19], a vector processor (capable of operating on 256 bit vec-
tors in 8, 16, or 32 bit chunks) is tightly coupled with a set of memory macros.
For the purposes of simulation, it is assumed that the memory macro provides
2 k-bits of data per operation through a single open row register. The ASAP’s



Data Intensive Memory Workloads on Distributed PIM Systems 89

MEMORY MACRO

ROW
DECODER

ROW

PROCESSOR
(Wide Word Vector Unit)

REGISTER FILE (256-bits wide)

SENSE AMPLIFIERS

OPEN ROW REGISTER (2K-bits)

COLUMN DECODER

COLUMN

REQUESTED VALUE (WIDE WORD)INCOMING
ADDRESS

(WORD LINE)

 (BIT LINE)

Fig. 1. Typical PIM Memory Layout

register file then accesses that data in 256 bit chunks. Thus, while a random
read from memory will cause a DRAM access, a read contained in the current
open row does not incur that penalty (because it is simply a register transfer
operation).

The array of PIMs simulated is assumed to be homogeneous. Furthermore,
for the purposes of this paper, no particular interconnection topology is as-
sume (rather, communication events are merely counted). Experimentation over
various topologies can be found in [18]. In actuality, a PIM array is likely to
be heterogeneous (potentially consisting of PIMs of different types – SRAM
and DRAM – and different sizes), and the interconnection network hierarchical.
Multiple nodes may be present on a chip, facilitating significantly faster on-chip
communications mechanisms. Additionally, since PIM systems may be part of
a larger memory hierarchy, additional non-PIM processing resources or memory
may be available.

PIMs, in our model, communicate through the use of parcels, which are mes-
sages possessing intrinsic meaning directed at named objects. Rather than merely
serving as a repository for data, parcels carry distinct high level commands and
some of the arguments necessary to fulfill those commands. Low level parcels
(which may be handled entirely by hardware) may contain simple memory re-
quests such as: “access the value X and return it to node K.” Higher level parcels
are more complicated and may take the form “resume execution of procedure Y
with the following partially computed result and return the answer to node L.”
Thus, it should be assumed that parcels can perform both communication and
computation, and may be invoked by the user, run-time system, or hardware.



90 Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

4 Simulation Methodology
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Fig. 2. Shade Simulations

The principle benchmarking mechanism presented in this paper is the Shade
suite[24] developed by Sun Microsystems. This tool allows for the analysis of
any SPARC binary by providing a simple mechanism for examining the code’s
execution instruction by instruction. Figure 2 shows the simulation mechanism.
User written analysis code takes the running instruction stream and current
machine state to track the state of the processing and memory systems for a
PIM array. Of particular interest are memory events, such as opening a new row
or generating an off chip memory access.

Since the Shade suite traces SPARC instructions, the simulated ISA cor-
responds roughly to that of a typical RISC machine. This obviously does not
represent the vector ASAP ISA, however, this work is primarily concerned with
the performance of the memory system.

Shade does not provide a mechanism for tracing multi-threaded code, though
a package to do so is under development and will be incorporated into future
work. Consequently the instruction streams analyzed here are single threaded.
However, since they are taken from the program’s main loop of execution, they
are not atypical.

To allow the simulation to be tractable, input sets were restricted to the
100-500 MB range, as appropriate for the particular benchmark. Additionally,
simulation was limited to a 32-bit address space. Data sets were divided into
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three parts: code (as indicated by portions of memory subject to an instruction
fetch), the stack (which grows down from the top of the address space), and the
heap (everything else). For the purposes of data movement, only objects in the
heap were analyzed.

Many of the simulations, though consisting of smaller data sets, were per-
formed with an eye towards very large machines (consisting potentially of a
million or more nodes). Thus, large parcel sizes (for pages, code, state, etc.),
which can be handled by the extremely high bandwidth interconnection net-
works of such a machine, are not considered detrimental to performance. On the
other hand, broadcasts, updating many remote data structures, or overhead data
structures which envelop most of the memory on a given node are considered
detrimental to performance.

Of particular interest is the amount of time a given thread of execution can
continue on a node before an off node memory access is generated. Thus, the
execution model favors uninterrupted execution for long periods of time.

5 Metrics

There are primarily two metrics which will be presented throughout the rest of
this paper. The first, and simplest to understand, is the miss rate. It is, quite
simply, the fraction of accesses which cause a miss over the number of accesses
during the entire program execution. If A represents the total number of accesses
and M represents the total number of misses, the miss rate is merely M

A . This
is the traditional metric presented when examining the “efficiency” of caches.

However, since the measure of efficiency for the purposes of these experiments
is run length between misses (off node accesses), the more detailed Cumulative
Instruction Probability Density, or CIPD, is also presented. The CIPD is com-
puted by dividing a program’s execution up into streams of instructions for
which no miss is generated, given the memory state of the machine at the first
instruction in each stream. That is, the first instruction encountered which gen-
erates a miss constitutes the beginning of the next stream, which means that
the previous instruction is the end of the preceding stream.

Streams of the same length (in terms of number of instructions) are placed
into buckets. The probability that a randomly selected instruction stream will be
from a given bucket is then computed. If the CIPD is represented by the function
Ψ(L) where L is an instruction length, Ψ(L) will return the probability that an
instruction stream of length greater than or equal to L will be encountered.
Thus, for any program, Ψ(0) = 1, and if γ represents the maximum length of
any instruction stream, Ψ(γ + 1) = 0. Each of the CIPD graphs which follow
represent exactly the function Ψ(L) for each experiment. Ψ can also be used to
determine the probability that an instruction stream of length less than or equal
to L will be generated. This function, called Ψ∗(L) = 1 − Ψ(L).

It should be noted that the graphs are constructed from individual data
points determined during program execution. Since the Ψ always begins at 1
and eventually decays to 0, anything to the left of the beginning of the graph
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(usually 103 instructions) will rapidly reach 1. Similarly, the “end-points” pre-
sented are not the true end-points (since they should always become 0); rather
they represent the probabilities of the largest instruction streams encountered.
Rather than presenting the entire function, these starting and ending points were
chosen to better represent the graph and include more information.

There is no notion of weight contained within the CIPD, which can be
thought of as “time spent executing.” Instruction streams of very long length will
show a relatively low CIPD, but could potentially represent the most significant
percentage of the overall execution time.

6 Working Set Critical Mass

Of primary concern in the construction of PIM systems is the ability of a PIM
to capture a significant working set to perform computation. Modern systems
represent working sets in two ways: as a cache or as a page space.

6.1 Caches

Four cache configurations were examined in detail using PIMs of 1, 2, 4, 8, 16 and
32 MB. The configurations were a 256-bit block direct mapped cache, a 2k-bit
block direct mapped cache, and 256-bit block 4-way and 8-way set associative
caches. (The choice of block size corresponds to assumptions regarding conve-
nient memory access discussed above.) For the purposes of these experiments,
only heap data was analyzed (that is, code references were ignored under the
assumption that code which is not self modifying can be duplicated across any
number of nodes, and stack references were ignored as the size of the active area
in the stack tends to be relatively small [18]).

Figure 3 show the typical cache result, in this case using the Method of
Moments benchmark. As can be seen from the miss rate, increasing the cache
size does not significantly impact the miss rate above cache sizes of 16 MB.
Further more, for the most effective configurations (the 256 bit block and 2 k-bit
block direct mapped), it does not effect it at all from the initial 1 MB size on.
This indicates that temporal locality is exhausted for these benchmarks with
a relatively small PIM size. (In this regard, the data management benchmark
fared the best, however its best configurations did not improve above 4 MB PIM
sizes.) Full simulation details can be found in [18].

Somewhat counter-intuitively, the set associative caches performed worse
than the direct mapped configurations. However, given that the caches are so
large (as are the block sizes), many sets in both of the set associative config-
urations remained unfilled. The low reuse of many of the benchmarks further
accentuated this outcome.

The increased spatial locality provided by paged memory spaces significantly
improved performance. The next section will demonstrate a 1-2 order of magni-
tude improvement in performance.
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6.2 Paged Memory

Programmers tend to allocate even pointer-based data in a relatively uniform
fashion[23]. This accounts largely for the improvement in performance demon-
strated by paged memory configurations. Of primary concern here is the degree
to which larger pages are effective, given that on a PIM with a relatively small
physical address space, pages which are too large may not allow enough windows
into the address space to be effective.

Figure 4 from the DIS Data Management shows the miss rate versus the
number of pages on a given node for pages of various sizes (4 KB to 256 KB). The
key result given by this graph is that for all PIM sizes tested (1 MB to 32 MB)
increasing the page size uniformly improved the miss rate. This indicates that in
each case not only was the larger page able to provide additional spatial locality,
but having fewer windows into the overall address space did not adversely affect
the miss rate.

Obviously larger page sizes place a greater demand on the system’s inter-
connection network during a miss. However, it should be noted that the type
of system under examination is assumed to have a very high bandwidth inter-
connect (with a corresponding high latency for access). Additionally, due to the
enormous number of nodes – potentially O(106) – possible in such a system, it
makes sense to place a greater premium on directory services and the simplicity
of name translation than on page transmission time. Finally, no assumptions
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have been made in regard to the location of pages being retrieved (in another
area of physical memory, on disk, in a COMA arrangement, etc.), thus assigning
a “miss penalty” for the purposes of these experiments is largely irrelevant.

Table 1. Working Set CIPD Mean Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB
DM 10K 13.16M 13.16M 13.16M 13.16M
FF 200 300 600 1.03M 1.89M
MoM 5700 9.26M 2.62M 9.62M 9.62M
IU 632K 655K 9.26M 9.26M 9.26M
RAY 117K 202K 1.11M 1.11M 1.11M

Tables 1 and 2 show the mean and median values of the CIPD (Ψ(L)) for
each of the benchmarks. They show that relatively small PIMs (4 MB to 8 MB)
are highly effective in capturing a working set for most benchmarks. The FFT is
a highly unusual case in that 16 MB PIMs are of particular strength in capturing
the working set. This is not surprising, however, since the matrices involved are
O(15MB) in size.
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Table 2. Working Set CIPD Median Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB
DM 2K 20.55M 20.55M 20.55M 20.55M
FF 2K 2K 2K 1.54M 1.72M
MoM 18K 393K 393K 393K 393K
IU 601K 601K 1.53M 1.53M 1.53M
RAY 148K 149K 155K 155K 155K

7 Mobile Threads

Thus far it has been shown that an individual PIM is capable of holding a sig-
nificant workings set and that increasing the page size significantly improves run
lengths on a given node. Furthermore, system design thus far has emphasized
not only the long run lengths between remote accesses (due to the relatively
low latency of a local memory access versus a remote memory access), but also
simplicity in tracking the location of data. In extremely large systems, main-
taining a directory of highly fragmented data becomes complex both due to
synchronization and storage requirements[18].

Consequently, it becomes increasingly viable to move the computation in-
stead of the data in a mobile thread environment. This system, similar to Active
Messages[7], extends from the ability of a parcel to invoke computation on a
remote node. Under this model, a thread executes until a remote access is gen-
erated. At that time, the location of the remote names is determined, and the
thread is packaged into a parcel for transmission to the remote node. Upon
receipt, the remote node continues the thread’s execution.

There are several potential advantages to moving the computation:

– Page tables or other data structures managing the translation of names be-
come small.

– Static data placement significantly reduces the synchronization involved in
updating distributed versions of those structures.

– The physical location of a given computation need not be tracked at all.
Threads can freely roam the system without causing the update of compli-
cated, distributed data structures. Specifically, if various threads communi-
cate through shared memory, they need not know the physical node upon
which the thread with which they are communicating resides, only the loca-
tion of the shared memory.

– Programming models can emphasize moving to a given node, exhausting the
data present, and moving on. Simple mechanisms for delivering such data
can easily be provided by the runtime system.

– No round trip communication is necessary since the thread can move to
the data rather than requesting data which must then be returned. This
eliminated one high latency penalty upon each movement.

Naturally, there are potential problems with such an arrangement:
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– Load balancing may be difficult, especially if data placement relies upon
highly shared data structures (that is, a given node could become a bottle-
neck if sufficient computation resources are unavailable).

– The runtime system must be capable of dealing with threads which have run
amuck.

– It may be impossible to group data such that related items are together.
(This experimentation, using benchmarks which are among the worst known
in this regard, indicates that this is really not a problem.)

It is impossible to address all of these problems in this paper, particularly
since this experimentation is still in the preliminary phase. Furthermore, the
single threaded model adopted for these experiments is incapable of examining
contention amongst several mobile threads.

The current model does, however, allow for the characterization of memory
access patterns generated by a single mobile thread. Since this single thread
represents the main loop of the program, its memory demands should be no
smaller than those of its children.

Given the potential difficulties of mobile thread execution, it is likely that
a hybrid model will be adopted. For example, data which is heavily shared but
not often modified could be duplicated amongst multiple nodes. Additionally,
it should be noted that each of the potential problems listed above also occurs
with systems which only move data.

7.1 Execution Model

Figure 5 shows the two potential types of mobile thread movement. In the first
form, each time a remote memory access is generated a thread is packaged and
moved to a new node. A slightly more complex model allows for the thread to
communicate with the node upon which it was previously executing in recogni-
tion of the fact that some data from that node is probably still necessary during
the computation. (This data can, in fact, be captured before the thread moves,
which alleviates the reverse communication.)

Data contained on the previous node, if available, is tracked as a “look-
back reference.” This represents, ideally, what could be packaged up with the
thread when it is moved so as to facilitate longer computation on the next node
without communication. Of particular interest is the number of unique references
to the previous node. Knowing this allows for the construction of data structures
to effectively capture such references, and provides a measure of feasibility for
mobile threads.

7.2 Data Layout

The experiments to be presented here allow for an extremely simplistic data
layout. Heap data is divided into chunks equivalent to a given PIM size, and is
held in place. Experimentation in [18] shows that the size of the active stack and
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Fig. 5. Types of Thread Movement

code sections is relatively small (with will over 99% of each being served by in
32 KB of information or less).

The Spartan nature of this data placement tends to yield worst case results. It
allows for no compiler, run-time, or user intervention in the policy for placement.
Data is merely divided according to PIM size and placed accordingly.

7.3 Run Length Experimentation

Figure 6 shows the impact of backwards references on run length and the overall
effectiveness of potential mobile thread computation. In this particular case (DIS
Data Management) the results are easiest to understand (and are fairly typical).
Because the data structure being traversed is a tree, the PIM size does not
significantly alter the run-length data. (The index tree is significantly larger
than even the largest PIM studied, therefore in eliminating half of the tree, the
thread is required to go to a different node regardless of PIM size.)
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Allowing for look-back references increased the maximum run length by ap-
proximately two orders of magnitude. Similarly, it increased the probability of
executing a longer run by nearly an order of magnitude.

Figure 7 shows the most dramatic results. For the Method of Moments code,
the maximum run length improved by over four orders of magnitude. Further-
more, not allowing for look-back references yielded particularly bad results – run
lengths of over 1,000 instructions occurred less than 0.0001% of the time.

The numerous short run lengths in this benchmark can be attributed to the
simplicity of the data placement scheme as related data structures are allocated
with very low locality. (Specifically, several big matrices are allocated one after
the other, and therefore reside on separate nodes.)

7.4 Look-Back Reference Results

Figures 8 and 9 show the probability density of a unique number of references to
the previous node being made for a given instruction stream. In every run, except
the Image Understanding benchmark, only 10 percent of instruction streams
reference more than 10 unique 32-bit words from the previous node, indicating
that a very small amount of data is needed to augment a thread once it has
moved.

Figure 10 shows the worst case results given by the Image Understanding
benchmark. The IU benchmark tended to thrash between the image it was look-
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ing for and that which it was examining. This problem can be alleviated by
better data placement.
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8 Conclusions and Future Work

This paper examined the architectural parameters which effect program ex-
ecution on PIM arrays using the Data Intensive Benchmark suite. Because
these benchmarks exhibit complex, non-uniform memory request patterns, un-
derstanding their characteristics provides an ideal test-bed to flush out the ar-
chitectural parameters necessary to take advantage of extremely low latency
on-node memory accesses. Furthermore, by focusing on applications which have
proven themselves difficult for typical memory systems to accommodate, this
paper provides a set of “worst (realistic) case” memory access scenarios.

The paramount engineering problem upon which this work centered was the
determination of the physical parameters of the design of the memory system
(particularly how much physical memory a given node would need to sustain
significant computation, and how that memory can be logically organized). While
larger memories generally improved performance, it was shown that a relatively
small PIM (with a 2 to 8 MB memory macro, for example) can sustain significant
computation, and that, in fact, significantly larger PIMs were needed before
another order of magnitude increase in executions between misses occurred.

Surprisingly, the increased potential to exploit spatial locality provided by
large pages provided significant benefit in all the experimentation. Given that
the benchmarks exhibit highly non-linear stride during memory accesses (due
to pointer chasing or non-uniform matrix access), and each contained very large
data sets, this result, in which fewer windows into the address space are available,
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took the experimentation in a different direction. Specifically, the number of
windows into the address space on each node was reduced to the minimum (one)
and the computation was allowed to move between nodes.

Generally, even given the simplistic data placement model, this mechanism
proved effective, especially when coupled with the ability to “look back” at the
previous node for data which may still be needed. After moving, the amount
of data used on the previous node tended to be quite small (on the order of
hundreds of bytes), implying that it can be effectively captured and packaged
before the thread is moved.

Future work in this area centers upon refining the mobile thread model. A
simulator capable of tracking multi-threaded versions of the DIS suite is currently
examining the issues of contention, scheduling and traffic. Furthermore, work to
define the data structures and hardware necessary to effectively capture look-
back references and accelerate the packaging, as well as efforts to define multi-
threading constructs capable of supporting inexpensive thread invocations and
context switches.
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Abstract. Many architectural ideas that appear to be useful from a
hardware standpoint fail to achieve wide acceptance due to lack of com-
piler support. In this paper we explore the design of the VIRAM ar-
chitecture from the perspective of compiler writers, describing some of
the code generation problems that arise in VIRAM and their solutions
in the VIRAM compiler. VIRAM is a single chip system designed pri-
marily for multimedia. It combines vector processing with mixed logic
and DRAM to achieve high performance with relatively low energy, area,
and design complexity. The paper focuses on two aspects of the VIRAM
compiler and architecture. The first problem is to take advantage of the
on-chip bandwidth for memory-intensive applications, including those
with non-contiguous or unpredictable memory access patterns. The sec-
ond problem is to support that kinds of narrow data types that arise in
media processing, including processing of 8 and 16-bit data.

1 Introduction

Embedded processing in DRAM offers enormous potential for high memory
bandwidth without high energy consumption by avoiding the memory bus bot-
tlenecks of conventional multi-chip systems [FPC+97]. To exploit the memory
bandwidth without expensive control and issue logic, the IRAM project at U.C.
Berkeley is exploring the use of vector processing capabilities in a single-chip
system called VIRAM, designed for multimedia applications [PAC+97]. Studies
of hand-coded VIRAM benchmarks show that performance on a set of multi-
media kernels exceeds that of high-end DSPs and microprocessors with media-
extensions [Koz99,Tho00]. In this paper, we demonstrate that a vectorizing com-
piler is also capable of exploiting the vector instructions and memory bandwidth
in VIRAM.
� This work was supported in part by the Advanced Research Projects Agency of the

Department of Defense under contract DABT63-96-C-0056, by the California State
MICRO Program, and by the Department of Energy. The VIRAM compiler was
built using software provided by Cray, Inc.
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The technology for automatic vectorization is well understood within the
realm of scientific applications and supercomputers. The VIRAM project lever-
ages that compiler technology with some key differences that stem from dif-
ferences in the application space of interest and in the hardware design: the
VIRAM processor is designed for multimedia benchmarks and with a primary
focus on power and energy rather than high performance. There is some overlap
between the algorithms used in multimedia and scientific computing, e.g., matrix
multiplication and FFTs are important in both domains. However, multimedia
applications tend to have shorter vectors, and a more limited dynamic range for
the numerical values, which permits the use of single-precision floating-point as
well as integer and fixed-point operations on narrow data types, such as 8, 16,
or 32 bit values. VIRAM has features to support both narrow data types and
short vectors.

2 Overview of the VIRAM Architecture

2.1 The Instruction Set

The VIRAM instruction set architecture (ISA) [Mar99] extends the MIPS ISA
with vector instructions. It includes integer and floating-point arithmetic oper-
ations, as well as memory operations for sequential, strided, and indexed (scat-
ter/gather) access patterns. The ISA specifies 32 vector registers, each containing
multiple vector elements. Each vector instruction defines a set of operand vectors
stored in the vector register file, a vector length, and an operation to be applied
element-wise to the vector operands. Logically, the operation described by an
instruction may be performed on all the vector elements in parallel. Therefore,
we use the abstract notion of a virtual processor in which there is one simple
processor per vector element that executes the operation specified by each vector
instruction.

The maximum number of elements per vector register is determined by two
factors: the total number of bits in a register and the width of the elements on
which operations are being performed. For example, in the VIRAM processor a
vector register holds 2K bits, which corresponds to 32 64-bit elements, 64 32-
bit elements, or 128 16-bit elements. The VIRAM ISA supports arithmetic and
memory operations on these three data widths. The bit width of the elements is
known as the virtual processor width (VPW) and may be set by the application
software and changed as different data types are used in the application.

Apart from narrow data types, multimedia applications frequently use fixed-
point and saturated arithmetic. Fixed-point arithmetic allows decimal calcula-
tions within narrow integer formats, while saturation reduces the error intro-
duced by overflow in signal processing algorithms. The VIRAM architecture
supports both features with a set of vector fixed-point add, multiply, and fused
multiply-add instructions. Programmable scaling of the multiplication result and
four rounding modes are used to support arbitrary fixed-point number formats.
The width of the input and output data for multiply-add are the same for these
operations, hence all operands for this instruction can be stored in regular vector
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registers. There is no need for extended precision registers or accumulators, and
this simplifies the use of these instructions. The maximum precision of calcula-
tions can be set by selecting the proper virtual processor width.

To enable efficient vectorization of conditional statements, the ISA includes
a vector flag register file with 32 registers. Each register consists of a bit vector
with one bit per vector element, which may be applied as a mask to the majority
of vector operations. The same flag registers are used to support arithmetic
exceptions, as well as software-controlled speculation of both load and arithmetic
operations.

2.2 The VIRAM Processor
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Fig. 1. The Block Diagram of the VIRAM Processor.

The VIRAM processor chip is an implementation of the VIRAM architecture
designed at U.C. Berkeley [KGM+00]. Its block diagram is presented in Figure
1. It includes a simple in-order (scalar) MIPS processor with first level caches
and floating-point unit, a DMA engine for off-chip access, an embedded DRAM
memory system, and a vector unit which is managed as a co-processor. Both the
vector and scalar processors are designed to run at 200 MHz using a 1.2V power
supply, with a power target of 2 Watts [Koz99].

The vector unit of the VIRAM processor includes one floating-point and
two integer arithmetic units. Each arithmetic unit contains a 256-bit datapath,
which can be used to execute 4 64-bit operations, 8 32-bit operations, or 16 16-bit
operations simultaneously. Thus, the virtual processors that one may imagine
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acting on an entire vector register are implemented in practise by a smaller
set of vector lanes, which execute a vector operation by computing a subset of
the elements in parallel in each clock cycle. With 256 bits datapath width, the
vector unit has 4 64-bit lanes, which can be viewed as 8 32-bit lanes or (for
integer operations) 16 16-bit lanes.The ISA allows for 32 and 64-bit floating-
point as well as 8, 16, 32, and 64-bit integer operations. The VIRAM processor
supports only 32-bit floating-point and 16-, 32-, and 64-bit integer operations.1

VIRAM’s peak performance is 1.6 GFLOPS for 32-bit floating-point, 3.2 GOPS
for 32-bit integer operations, and 6.4 GOPS for 16-bit integer operations.

The vector unit uses a simple, single-issue, in-order pipeline structure for
predictable performance. The combination of pipelined instruction startup and
chaining, the vector equivalent of operand forwarding, enables high performance
even with short vectors. To avoid large load-use delays due to the latency of
DRAM memory, the worst-case latency of a on-chip DRAM access is included
in the pipeline and the execution of arithmetic operations is delayed by a few
pipeline stages. This hides the latency of accessing DRAM memory for most
common code cases.

There are 16 MBytes of on-chip DRAM in the VIRAM processor. They are
organized in 8 independent banks, each with a 256-bit synchronous interface. A
DRAM bank can service one sequential access every 6.5ns or one random access
every 25ns. The on-chip memory is directly accessible from both the scalar and
vector instructions using a crossbar interconnect structure with peak bandwidth
of 12 GBytes/s. Instruction and data caches are used for scalar accesses, while
references from the vector unit are served directly by the DRAM macros. The
memory unit in the vector coprocessor can exchange 256 bits per cycle with the
DRAM macros for sequential accesses, or up to four vector elements per cycle
for strided and indexed accesses. It also includes a multi-ported TLB for virtual
memory support.

3 Compiler Overview

The VIRAM compiler is based on the Cray vectorizing compiler, which has C,
C++ and Fortran front-ends and is used on Cray’s supercomputers. In addi-
tion to vectorization, the compiler performs standard optimizations including
constant propagation and folding, common subexpression elimination, in-lining,
and a large variety of loop transformations such as loop fusion and interchange.
It also performs outer loop vectorization, which is especially useful for extract-
ing large degrees of parallelism across images in certain multimedia applications.
Pointer analysis in C and C++ are beyond the scope of this paper, so we use
the Cray compiler strategy of requiring “restrict” pointers on array arguments
to indicate they are unaliased.

1 The fused multiply-add instructions in the VIRAM ISA are implemented in the VI-
RAM processor for fixed-point operations but not floating-point. These instructions
are not targeted by the compiler and will therefore not be considered here.
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The strategy in this project was to re-use as much compiler technology as
possible, innovating only where necessary to support the VIRAM ISA. The Cray
compiler has multiple machines targets, including vector machines like the Cray
C90 and parallel machines like the T3E, but it did not support the MIPS archi-
tecture, so our first step was to build a MIPS back-end for scalar code and then
a VIRAM code generator for vectorized code. Differences in VIRAM and Cray
vector architectures lead to more interesting differences:

1. VIRAM supports narrow data types (8, 16, and 32 bits as well as 64 bits).
Cray vector machines support 32 and 64 bit types, but, historically, the
hardware ran 32-bit operations at the same speed as 64-bit, so there was
no motivation to optimize for narrower types. In VIRAM using narrow data
types leads to higher peak performance, as each 64-bit datapath can execute
multiple narrower operations in parallel.

2. In both Cray and VIRAM architectures, conditional execution is supported
by allowing a vector instruction to be computed with a set of flags (or masks)
that effectively turns off the virtual processors at those positions. VIRAM
treats flags as 1-bit vector registers, while the Cray machines treat them as
64 or 128-bit scalar values.

3. VIRAM has special support for fixed-point arithmetic, saturation and vari-
ous rounding modes for integer operations, which are not provided on Cray
machines.

4. VIRAM allows for speculative execution of vector arithmetic and load in-
structions, which is particularly important for vectorizing loops with condi-
tions for breaking out of the loop, e.g., when a value has been found.

This list highlights the differences in the architectures as they affect compila-
tion. In this paper we focus mainly on the first of these issues, i.e., generation of
code for narrow data widths, which is critical to the use of vector processing for
media processing. The last two features, fixed-point computations and specula-
tive execution, have no special support in our compiler, and while the flag model
resulted in somewhat simpler code generation for VIRAM, the difference is not
fundamental. In VIRAM the vector length register implicitly controls the set of
active flag values, whereas the Cray compiler must correctly handle trailing flag
bits that are beyond the current vector length.

4 On-chip Memory Bandwidth

The conventional wisdom is that vector processing is only appropriate for sci-
entific computing applications on high-end machines that are expensive in part
because of their SRAM-based, high bandwidth, memory systems. By placing
DRAM and logic on a single chip, VIRAM demonstrates that vector processing
can also be used for application domains that demand lower cost hardware. In
this section, we use a set of different implementations of the dense matrix-vector
multiplication (MVM) benchmark to explore the question of how well VIRAM
supports memory-intensive applications. Although MVM is a simple compila-
tion problem, it does not perform well on conventional microprocessors due to
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Fig. 2. Performance of 64×64 Single-precision Floating-point Matrix-Vector Multipli-
cation on the VIRAM Processor.

the high memory bandwidth requirements. There are only two floating-point
operations per matrix element.

When the matrix uses a row-major layout, matrix vector multiplication can
either be organized as a set of dot products on the rows of the matrix or a set of
saxpy’s on the columns of the matrix. The dot products have an advantage in
using unit stride access (sequential) to the matrix, while saxpy’s require strided
accesses. Strided and indexed vector accesses are slower than unit stride, because
they can only fetch four elements per cycle, regardless of the virtual processing
width. A unit stride load can always fetch 256 bits per cycle, which is eight 32-
bit elements for example. In addition, strided and indexed accesses may cause
DRAM bank conflicts which stall the vector unit pipeline. On the other hand,
the dot product involves a reduction that is less efficient, because it involves
operations on short vectors near the end of the reduction. For very long vectors,
the final stages of the reduction are amortized over more efficient full vector
operations, so the impact on efficiency is negligible.

Figure 2 shows the performance in MFLOPS of single-precision floating-point
matrix vector multiplication routine on a 64×64 matrix. The numbers are taken
for the VIRAM processor implementation by varying the number of 64-bit lanes
from 1 to 8. Our performance results are produced using a simulator that gives
a cycle-accurate model of the VIRAM vector unit. The first of these groups is
a dot-product implementation using unit stride. Not surprisingly, with only 64
elements per vector, efficiency is somewhat low due the percentage of time spent
on reductions of short vectors. The second version shows a saxpy implementation,
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where the accesses to the matrix are the stride of the matrix dimension (64). If
one pads the array with an extra element, giving it a prime stride of 65, that
reduces memory bank conflicts, resulting in the third group of numbers. Finally,
if we use a column-major layout for the matrix, a saxpy implementation can be
used with unit stride, which produces the best performance. We note that while
is may be attractive to consider only using the column-based layout, another
common kernels used in multimedia application is vector-matrix multiplication,
which has exactly the opposite design constraints, so a row layout is preferred
there.

As indicated by this data, an 8-lane vector unit does not perform well with
only 8 banks. Even with 4 lanes there are significant advantages to having more
banks for the saxpy implementations with the row-major matrix layout. More
DRAM banks reduce the likelihood of bank conflicts for strided memory accesses.
A similar effect can be achieved by organizing the existing banks in a hierarchical
fashion with sub-banks, which would allow overlapping of random accesses to a
single bank [Y+97]. Unfortunately, hierarchical DRAM bank technology was not
available to us for the VIRAM processor, but we expect it to be available in the
next generation of embedded DRAM technology.
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Fig. 3. Performance of 100 × 100 Double-precision Floating-point Matrix-Vector Mul-
tiplication.

Nevertheless, the performance is impressive even for the 4-lane, 8 bank VI-
RAM design when compared to conventional microprocessors with higher clock
rates, higher energy requirements, more total area per microprocessor, and many
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more chips in the system for caches and main memory. Figure 3 presents the per-
formance of the hand-coded vendor implementation of 100×100 double-precision
MVM as reported in the LAPACK manual for a set of high performance server
and workstation processors [ABB+99]. A column-major layout is used with all
of them. The VIRAM processor does not support double-precision operations
on its floating-point datapaths because they are of no practical use for multime-
dia applications. Still, we were able to calculate the performance of a four lane
VIRAM processor with support for double-precision using a simulator.

From the six other processors, only the hand-coded Alpha 21264 outperforms
compiled code on VIRAM by merely 6%. The rest of the processors perform
1.3 to 15 times worse, despite their sophisticated pipelines and SRAM based
cache memory systems. Note that for larger matrices VIRAM outperforms all
these processors by larger factors. The performance of server and workstation
processors is reduced for larger matrices as they no longer fit in their first level
caches. On the other hand, the vector unit of VIRAM accesses DRAM directly
and incurs no slow-down due to caching effects, regardless of the size of the
matrix. In addition, multiplication of larger matrices leads to operations on
longer vectors, which amortize better the performance cost of the final stages
for reduction operations in the saxpy implementation. Hence, the performance
of the VIRAM processor actually increases with the size of the matrix.

5 Narrow Data Types

One of the novel aspects of the VIRAM ISA is the notion of variable width data
which the compiler controls by setting the virtual processor width (VPW). The
compiler analyzes each vectorizable loop nest to determine the widest data width
needed by vector operations in the loop and then sets the VPW to that width.
The compiler uses static type information from the variable declaration rather
than a more aggressive, but also more fragile, variable width analysis [SBA00].

The process of computing the VPW is done with multiple passes over a
loop nest. On the first pass, the VPW is assumed to be 64 bits, and the loop
nest is analyzed to determine whether it is vectorizable. At the same time, the
widest data type used within the loop is tracked. If the maximum data width
is determined to be narrower than 64 bits, vectorization is re-run on the loop
nest with the given estimate of VPW (32 or 16 bits). The reason for the second
pass is that narrowing the data width increases the maximum available vector
length, and therefore allows more loops to be executed as a single sequence of
vector instructions without the strip-mining loop overhead.

The above strategy works well for 32-bit data types (either integer or floating-
point) but does not work well for 16 bits in standard C. The reason is that the C
language semantics require that, even if variables are declared as 8-bit characters
or 16-bit shorts, most operations must be performed as if they were in 32 bits.
To enforce these semantics, the compiler front-end introduces type casts rather
aggressively, making it difficult to recover information about narrower types in
code generation. Our initial experiments found that only the most trivial of
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loops, such as an array initialize, would run at a width narrower than 32 bits.
As a result, we introduced a compiler flag to force the width to 16 bits; the
compiler will detect certain obvious errors such as the use of floating-point in 16
bit mode, but trusts the programmer for the bit-width of integer operations.
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Fig. 4. Performance of Integer Media Kernels on VIRAM.

Figures 4 and 5 shows the performance of several media processing kernels
on a VIRAM configuration with 16 memory banks and varying numbers of 64-bit
lanes from 1 to 8. Figure 4 presents integer benchmarks taken from the UTDSP
benchmark suite [LS98], while Figure 5 includes single-precision floating-point
kernels.

– colors (colorspace conversion) is a simple image processing kernels that
converts from the RGB to the YUV format. It reads and writes 8-bit data
and operates internally on it as 16-bit data. Strided memory operations are
convenient for selecting pixels of the same color that are interleaved in RGB
format in the image. Loads of 8-bit data while the VPW is set to 16 bits,
fetches each 8-bit value into a single 16-bit vector element, without any
shuffling or expanding of data needed.

– compose (image composition) is similar to colors in the data types, but can
be performed using unit stride memory accesses only.

– convlv is an image convolution, which like colorspace performs a 16-bit
integer computation on images stored in RGB format using strided memory
accesses. Each output pixel is computed by multiplying and summing the
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Fig. 5. Performance of Single-Precision Floating-point Media Kernels on VIRAM.

pixels in a 3x3 region. The source code contains 4 nested loops, and it is
critical that the compiler vectorize an outer loop to obtain reasonable vector
lengths. By default, the compiler merges the middle two loops and vector-
izes them while unrolling the innermost one. The performance shown here
improves on that default strategy by unrolling the two inner loops in source
code, while the compiler vectorizes the 2nd loop that goes over rows of the
image.

– detect is an edge detection algorithm for images and decrypt performs
IDEA decryption. Both of these use a mixture of 16-bit and 32-bit integer
operations.

– FIR is an FIR filter, saxpy1 and saxpy2 are, respectively, 64 element and
1024 element saxpy’s. Matmul is a 64x64 matrix multiplication. All of these
use 32-bit floating-point computations.

Although hand-optimized VIRAM code is not available for all of these ker-
nels in this form, two floating-point kernels are available and are quite close in
performance. The hand-coded performance numbers for a 4-lane configuration
with 8 memory banks are: 720 MFLOPS for saxpy2 and 1,580 MFLOPS for
matmul. Note that the performance in both cases depends on the size of the
input data. The two versions of saxpy are included to show how performance
improves with longer application level arrays, because they better amortize the
time it takes to fill and drain the long vector pipeline at the beginning and at
the end of the kernel. This shows again an advantage VIRAM for computations
that operate on large images or matrices. VIRAM does not depend on caches,
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hence it performance often increases rather than decreases with increased data
size.

The performance of kernels with 16-bit operations is limited primarily by the
number of elements that can be fetched per cycle for non-unit stride accesses. The
VIRAM processor fetches one element per lane for indexed and strided accesses,
while a 64-bit lane can execute 4 16-bit arithmetic operation simultaneously. This
mismatch exists due to the high area, power, and complexity cost of generating,
translating, and resolving for bank conflicts more than one address per lane
per cycle for strided and indexed accesses. Unit stride accesses, due to their
sequential nature, can fetch multiple elements with a single address for all lanes.
Bank conflicts are also responsible for some performance degradation.

6 Related Work

The most closely related compiler effort to ours is the vectorizing compiler
project at the University of Toronto, although it does not target a mixed logic
and DRAM design [LS98]. Compilers for the SIMD microprocessor extensions
are also related. For example, Larsen and Amarsinghe present a compiler that
uses Superword Level Parallelism (SLP) for these machines; SLP is identical to
vectorization for many loops, although it may also discover vectorization across
statements, which typically occurs if a loop has been manually unrolled.

Several aspects of the VIRAM ISA design make code generation simpler
than with the SIMD extensions [PW96,Phi98]. First, the VIRAM instructions
are independent of the datapath width, since the compiler generates instructions
for the full vector length, and the hardware is responsible for breaking this into
datapath size chunks. This simplifies the compilation model and avoids the need
to recompile if the number of lanes changes between generations. Indeed, all of
the performance numbers below use a single executable when varying the number
of lanes. Second, VIRAM has powerful addressing modes such as strided and
indexed loads and stores that eliminate the need for packing and unpacking. For
example, if an image is stored using 8-bits per pixel per color, and the colors are
interleaved in the image, then a simple array expression like a[3*i+j] in the
source code will result in a strided vector load instruction from the compiler.

7 Conclusions

This paper demonstrates that the performance advantages of VIRAM with vec-
tor processing do not require hand-optimized code, but are obtainable by ex-
tending the vector compilation model to multiple data widths. Although some
programmer-control over narrow data types was required, the programming
model is still easy to understand and use. VIRAM performs well and demon-
strates scaling across varying numbers of lanes, which is useful for obtaining
designs with lower power and area needs or for high performance designs appro-
priate for a future generations of chip technology. The compiler demonstrates
good performance overall, and is often competitive with hand-coded benchmarks
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for floating-pointer kernels. The availability of high memory bandwidth on-chip
makes a 2 Watt VIRAM chip competitive with modern microprocessors for
bandwidth-intensive computations. Moreover, the VIRAM instruction set of-
fers an elegant compilation target, while the VIRAM implementation allows for
scaling of computation and memory bandwidth across generations through the
addition of vector lanes and memory banks.
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int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++;
A[j]=temp;
}
}

int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++;
A[j]=temp;
}
}

pointer analysis hot page analysisoriginal code virtualization

int A[10000];
int B[10000];

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=CheckLoad(pB++, hp1);
CheckStore(&A[j], hp2)=temp;
}
}

int A[10000]; //hp2
int B[10000]; //hp1

void main(){
int *pB;
int j,temp;
pB=&B[0];
for(j=0; j<10000; j++){
temp=*pB++; //hp1
A[j]=temp; //hp2
}
}
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SW: On Single-issue processor
Input regs:
  vir_addr, hp_vp, hp_pp

1. srl vir_page, vir_addr, BITS
2. andi offset, vir_addr, MASK
3. bne vir_page,hp_vp, AddrTr
4. addu  sram_addr, offset, hp_pp
5.  lw results, 0(sram_addr)

On Superscalar - ILP
Input regs:
  vir_addr, hp_vp, hp_pp

1. srl vir_page, vir_addr, BITS     1.  andi offset, vir_addr, MASK
2. bne vir_page,hp_vp, AddrTr       2.  addu  sram_addr, offset, hp_pp

    3.  lw results, 0(sram_addr)

Dedicated ISA
Input regs:
  vir_addr, hp_index(hp_vp, hp_pp)

1.  hplw results, vir_addr, hp_index
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• OB = # of bits in offset of hotpage vir_addr = log2(cache line size)
• µ = 000…..1111 , where # of 1’s = OB
• hp_pp is the hotpage register containing the SRAM frame 
• hp_vp is the hotpage register containing the virtual page
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Different performance trends
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Abstract 

Memory delays represent a major bottle,eck in embedded systems performance. Newer 
memory modMes exhibiting e~cient access modes (e.g., page-, burst-mode) partly nlle- 

viate this bottleneck. However, such features cannot be efficiently exploited in processor- 

based embedded systems without memory-aware compiler support. We describe a memory- 
aware compiler approach that exploits such efficient memory access ,nodes by extract- 
ing accurate timing information~ allowing the compiler’s scheduler to perform global 
code reordering to better hide the latency of memory operations. Moreover, we present 

a compiler technique which in the presence of  caches actively manages cache misses, 

and performs global miss tmff~ optimizatfons, to better hide the latency of  the mem- 
ory operations. Our memory-aware compiler scheduled several benchmarks on the Tf 

C6201 processor architecture interfaced with a 2-bank synchronous DRAM and gen- 

erated average improvements of  24% in the presence of efficient access modes, and 

61,6% improvement M the presence of caches, over the best possible acttedule using a 

traditional (memory-transparent) optimizing compiler, demonstrating the utility of  our 
memory-aware compilation approach. 

1 Introduction 

The memory subsystem is one of the key performance and power bottlenecks in 

emerging architectures" as the gap widens between processors and memories, long 
memory latencics hinder processor performance, while simultaneously dissipating more 

power. Advances in memory technology and memory architectures partially alleviate 

this problem, for instance through new generations of memories such as SDRAM, and 

RAM-BUS that exhibit efficient access modes (e.g., page-, burst-, and pipelined-accesz 

mode), However, these newer memory families still have to be accessed through some 
form of caching in order to deliver sustained performance, Previous work in optimiz- 

ing compilers and cache architectures have focused on improving cache performance 

through exploitation of program locality, program scheduling to hide iatencies of cache 

misses, etc. However, such techniques have traditionally assumed a fairly generic model 

*This work was partially supported by ~r~B from NSF (MIF-9708067), DARPA (F33615-00-C- 
1632) and a M a n i l a  fellowship. 
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of the background memories being accessed. While these newer memory families are 
designed with special, performance- enhancing access modes, even the most aggressive 
traditional optimizing compilers are unable to fully exploit such features. Our memory-
aware compilation approach explicitly models and captures detailed timing characteris-
tics of newer memory families, and exploits this timing information to further improve 
processor performance and provide opportunities for power management. 

In our approach, we capture the memory access protocols for each memory com-
ponent through a detailed and accurate timing model for the different memory access 
modes of a memory component. Using this timing information, our compiler techniques 
arc able lo belier match the characteristics of the memory sub-system with the specific 
processor architecture, leading to significant improvements in performance. Tradition-
ally, these access modes were transparent 10 the processor, and were exploited implicitly 
by the memory controller (e.g., whenever a memory access referenced an element al-
ready in the DRAM's row buffer, it avoided the row-decode step, fetching it directly 
from the row buffer). However, since ihe memory controller only has access to local 
information, il is unable to perform more global optimizations (such as global code re-
ordering to belter exploit special memory access modes). Our approach provides the 
compiler with a more accurate timing model for the specific memory access modes, 
and thus allows our compiler to perform global optimizations that aggressively hide the 
latency of the memory operations. Moreover, due lo the ubiquity of caches in today's 
architeclures, optimizing ihe memory accesses in the presence of caches is crucial. In 
the presence of caches, the accurate timing information allows our compiler to explicitly 
manage cache miss traffic, generating better performance through the hiding of cache 
miss latencies. 

Our memory-aware compilation approach exploits detailed memory timing informa-
tion, providing an opportunity to perform global compiler optimizations. First, we ex-
tract accurate memory timing from an architectural description of the processor/memory 
system in the EXPRESSION Architectural Description Language (ADL). Then, we use 
this detailed memory timing information to efficiently exploit the features of the mem-
ory modules, such as page-mode and burst-mode accesses, pipelining and parallelism. 
Additionally, in cache-based architectures we further improve performance through ex-
plicit management of cache miss traffic. 

The key idea in our approach is the notion of combining detailed timing of the mem-
ory modules (e.g., efficient memory access modes) with the processor pipeline timings 
to generate accurate operation timings. We then use these exact operation timings to 
belter schedule ihe application, and hide the latency of the memory operations. Proces-
sors traditionally rely on a memory controller lo synchronize and utilize specific access 
modes of memory modules (e.g., freeze the pipeline when a long delay from a memory 
read is encountered). However, the memory controller only has a local view of the (al-
ready scheduled) code being executed. In the absence of an accurate timing model, the 
best the compiler can do is to schedule optimistically, assuming ihe fastest access time 
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(e.g., page mode, or a hit in the presence of a cache), and rely on the memory controller 
to account for longer delays, often resulting in performance penalty. This optimistic 
approach can be significantly improved by integrating an accurate liming model into the 
compiler. In our approach, we provide a detailed memory timing model to the compiler 
so that it can better utilize efficient access modes through global code analysis and op-
timizations, and help the memory subsystem produce even better performance. We use 
these accurate operation timings in our retargetable compiler to better hide the latency 
of the memory operations, and obtain further performance improvements. 

Moreover, in the absence of dynamic data hazard detection (e.g., in VLIW proces-
sors), these operation timings are required to insure correct behavior: the compiler uses 
them to insert NOPs in the schedule to avoid data hazards. In the absence of a de-
tailed timing model, the compiler is forced to use a pessimistic schedule, thus degrading 
overall performance. 

2 Related Work 

There has been related work in 2 domains: high-level synthesis and mainstream com-
pilers and architectures. In high-level synthesis. Panda et al. [7] present pre-synthesis 
optimizations to use the page-mode DRAM access. [6| extend this work to Synchronous 
and RAMBUS DRAMs, using burst-mode accesses, and exploiting memory bank inter-
leaving. 

Recent work on interface synthesis [1], [2] present techniques to formally derive node 
clusters from interface timing diagrams. These techniques can be applied to provide an 
abstraction of the memory module timings required by our approach. 

In [3] and [4| we presented preliminary results on generating and using accurate tim-
ing information in the compiler, for page- and burst-mode DRAM accesses, as well as 
in the presence of caches, hiding the miss latencies by improving the overlap between 
cache misses and hits to a different cache line. 

In the compilers/architectures domain, recent work by Rixner et al. [8] presents a 
memory controller approach to dynamically reorder the memory accesses, and improve 
the utilization of the DRAM access modes The dynamic reordering applies only to a 
window of pending memory accesses. By performing static compiler optimizations, it 
is possible to further improve the memory access schedule by globally reordering them. 
We complement this work by making the compiler aware of the memory access modes 
and timings. Moreover, we apply a similar compiler approach in the presence of caches. 

3 Overview of Experiments 

Our experiments demonstrate the performance gains obtained by using accurate tim-
ing in the compiler for the Texas Instruments TIC6201 VLIW DSP [9] processor in-
terfaced with the IBM03I6409C [51 Synchronous DRAM. We first optimize a set of 
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benchmarks to better utilize the efficient memory access modes (e.g., through memory 
mapping, code reordering or loop unrolling), and then we use the accurate timing model 
to further improve the performance by hiding the latencies of the memory operations. To 
separate out the benefit of the better timing model from the gain due to the access mode 
optimizations and the access modes themselves, we present the set of results which show 
the performance gains obtained by scheduling with accurate timing in the presence of 
a code already optimized for memory accesses, and compare them to the performance 
of the same memory-access-optimized code using less accurate timing, scheduled opti-
mistically, assuming the shortest access time available (page-mode access), and relying 
on the memory controller to account for longer delays. This optimistic scheduling is the 
best alternative available to the compiler, short of an accurate timing model. The per-
formance gains from exploiting detailed memory timing vary from 6% to 47.9%, and 
an average of 23.9% over a schedule that exploits the efficient access modes without 
detailed timing. We also compare the above approaches to the baseline performance of 
the system in the absence of efficient memory access modes. 

Our second set of experiments demonstrate the performance gains obtained by ag-
gressively optimizing the memory miss traffic on a set of multimedia and DSP bench-
marks. We perform the optimization in two phases: first we isolate the cache misses and 
attach accurate hit and miss timing to the memory accesses, to allow the scheduler to 
better target the memory subsystem architecture, obtaining between 15.2% and 52.8% 
performance improvement over the traditional compiler. We then further optimize the 
cache miss traffic, by loop shifting to reduce the intra-iteration dependence chains due 
lo accesses to the same cache line, and allow more overlap between memory accesses, 
resulting in a further 21.3% average performance improvement. 

Currently, our work applies to wide issue statically scheduled VLIW Processors, and 
preliminary results have been presented at DAC-2000 [3] and ICCAD-2000 [4]. We 
believe that our techniques are also applicable to dynamically scheduled processors. 
Our on-going work evaluates the improvements of our approach for out-of-order issue 
superscalar processors, and also addresses the tradeoff between increase in code size 
(due to loop unrolling) versus performance improvement. 

References 

[1] P. Chou, R. Ortega, and G. Borriello. Interface co-synthesis techniques for embedded systems. In 
ICCAD, 1995. 

(2] K.-S. Chung. R. Gupta, and C. L. Liu. Interface co-synihesis techniques for embedded systems. In 
ICCAD, 1996. 

[3] P. Grun, N. Dutt, and A. Nicolau. Memory aware compilation through accurate timing extraction. In 
DAC. 2000. 

[4] P. Grun, N. Dutt, and A. Nicolau. Mist: An algorithm for memory miss traffic mangement. In ICCAD. 
2000. 

150 Peter Grun, Nikil Dutt, and Alex Nicolau



[51 IBM Microelectronics. Data Shocls for Synchronous DRAM 1BM03I6409C. 
www. ch ips. ibm. com/products/memoryA)8J3348/. 

|6] A. Khare. P. R. Panda. N. D- Dun, and A. Nicolau. High level synthesis with synchronous and rambus 
drams. In SASIMI, Japan. 1998. 

[7] P. Panda. N. Dutl. and A. Nicolau. Memory Issues in Embedded Syslems-on-Chip. Kluwcr, 1999. 

[8J S. Rixner, W. Dally. U. Kapasi. P. Matlson, and J. Owens. Memory access scheduling. In ISCA, 
2000. 

19) Texas Instruments. TMS32OC620I CPU and Instruction Set Reference Guide. 

Aggresive Memory-Aware Compilation 151



Energy/Performance Design of Memory Hierarchies
for Processor-in-Memory Chips�

Michael Huang�, Jose Renau�, Seung-Moon Yoo �, and Josep Torrellas�
�Department of Computer Science

�Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

�weihuang,renau,yoo2,torrellas�@cs.uiuc.edu
http://iacoma.cs.uiuc.edu/flexram

1 Introduction

Merging processors and memory into a single chip has the well-known benefits of al-
lowing high-bandwidth and low-latency communication between processor and mem-
ory, and reducing energy consumption. As a result, many different systems based on
what has been called Processor In Memory (PIM) architectures have been proposed [1,
3, 7, 8, 10, 12–16, 18].

Recent advances in technology [4, 5] appear to make it possible to integrate logic
that cycles nearly as fast as in a logic-only chip. As a result, processors are likely to put
much pressure on the relatively slow on-chip DRAM. To handle the speed mismatch
between processors and DRAM, these chips are likely to include non-trivial memory
hierarchies in each DRAM bank.

With many on-chip high-frequency processors, all of them potentially accessing the
memory system concurrently, these chips will consume much energy. In addition, these
chips are likely to be used in non-traditional places like the memory of a server [3, 7,
12] or the I/O subsystem [1], which may not have heavy-duty cooling support. Conse-
quently, it is important to design the chips for energy efficiency.

In this abstract, we examine, from a performance and energy-efficiency point of
view, the design of the memory hierarchy in a multi-banked PIM chip with many sim-
ple, fast processors. Our results suggest the use of per-processor memory hierarchies
that include modest-sized caches, simple DRAM bank organizations that support seg-
mentation, and no prefetching.

2 Memory Hierarchies for PIM Chips

Our focus architecture is a PIM chip that includes tens of relatively simple, high-
frequency processors, each of which is associated with a bank of DRAM. Such a design
has been suggested for systems like Active Pages [12, 13], FlexRAM [7], and DIVA [3]
among others. The chip can be modeled as in Figure 1-(a), where the organization of the
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processors, memory, and network may vary. We feel, however, that currently-proposed
designs are relatively conservative in logic speed. Recent advances in technology appear
to allow logic to cycle nearly as fast as in a logic-only chip [4, 5]. This means that these
chips may soon include processors cycling at about 800-1000 MHz. Such processors
are likely to put much pressure on the slower DRAM.
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Fig. 1. Example of chip architecture considered. RB, DB, and Row Dec stand for row buffer, data
buffer and row decoder, respectively.

To handle the speed mismatch between processors and DRAM, these chips are
likely to associate a non-trivial memory hierarchy to each DRAM bank. In this pa-
per, we assume a per-bank baseline memory hierarchy as in Figure 1-(b). In the figure,
the instruction memory hierarchy includes a fast SRAM memory. The data memory hi-
erarchy includes a cache with hardware sequential prefetch of 1 line. The DRAM bank
itself is sub-banked and has row and data buffers. For example, Figure 1-(c) shows the
DRAM organized into 8 sub-banks, with 10 row buffers, and 2 256-bit data buffers.

Unlike in memory-only chips, where the DRAM organization is often limited to
standard designs, embedded systems allow many different organizations for the DRAM
array. For example, designers can change the width and length of a DRAM sub-bank,
and the number of sub-banks. These changes can affect the performance delivered and
the energy consumed by DRAM accesses, and the area utilized.
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In a traditional DRAM array organization, when a bank is accessed, every other
sub-bank is activated. Consecutive sub-banks are not activated because they share a
row buffer. Figure 2-(a) shows a 4 sub-bank organization. We now consider three im-
provements: segmentation, interleaving, and pipelining.
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Fig. 2. Different DRAM bank organizations and timings.

With segmentation (Figure 2-(b)), only one sub-bank is activated at a time. The
resulting row buffer decoupling changes the hit rate of the row buffers. In addition,
DRAM accesses consume less energy: because only half of the bit lines are activated,
about 50% of the energy is saved.

With interleaving, each sub-bank is vertically sliced and a data bus is assigned to
each of the resulting slices. Figure 2-(c) shows a 2-way interleaved system. The perfor-
mance is higher because both data busses work in parallel (Figure 2-(d) shows a timing
diagram with the maximum overlap, assuming a single address bus). As for energy, al-
though row buffer hits now cost a bit more, DRAM accesses again save about 50% of
the energy because only half of the cells are activated. The area used increases.

Finally, one problem shown in Figure 2-(d) is that reads from different sub-banks
that share a data bus are serialized by long sub-bank occupancy times. With pipelining,
these sub-banks can overlap their occupancy times (Figure 2-(e)). The only serialization
happens in the shared address bus and data bus. The result is higher performance. As
for energy, pipelining has only a small impact.

3 Evaluation Environment

We evaluate the PIM chip of Section 2 using a MINT-based simulation system [9].
The architecture modeled is a single chip with 64 processors connected in a ring. Each
processor is associated with a 1-Mbyte DRAM bank like in Figure 1-(b). The baseline
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parameters of each processor-bank pair are shown in Table 1. The target technology is
IBM’s 0.18 �m Blue Logic SA-27E ASIC [4] with the default voltage of 1.8 V.

Processor D-Cache I-Memory Data Buffer Row Buffer Sub-Bank

2-issue in-order 800MHz Sz: 8KB, WB Size: 4 Kinst. Number: 1 Number: 5 Number: 4
BR Penalty: 2 cycles Assoc: 2 Line: 4 inst. Size: 256 b Size: 1 KB Cols: 4096
Int,Ld/St,FP Units: 2,1,0 Line: 32 B RTrip:1.25ns Bus: 256 b Bus: 256 b Rows: 512
Pending Ld,St: 2,2 RTrip:1.25ns RTrip:3.75ns RTrip:7.5ns RTrip:15 ns

Table 1. Parameters for a single memory bank and processor pair. In the table, BR and RTrip
stand for branch and contention-free round-trip latency from the processor, respectively.

Appl. What It Does Problem Size
D-Cache Average
Hit Rate Power(W)

GTree Data mining: tree generation 5 MB database, 77.9 K records, 29 attributes/record 50.7% 10.2
DTree Data mining: tree deployment 1.5 MB database, 17.4 K records, 29 attributes/record 98.6% 10.8
BSOM BSOM neural network 2 K entries, 104 dims, 2 iters, 16-node network, 832 KB db 94.7% 15.5
BLAST BLAST protein matching 12.3 K sequences, 4.1 MB total, 1 query of 317 bytes 96.9% 8.7
Mpeg MPEG-2 motion estimation 1 1024x256 frame plus a reference frame. Total 512 KB 99.9% 11.3
FIC Fractal image compressor 1 512x512 image, 4 512x512 internal structure. Total 2 MB 97.8% 6.1

Table 2. Applications executed.

The names for the DRAM bank organizations that we evaluate are Trad, S, SP,
IS, and ISP, which refer to traditional, segmented, segmented pipelined, interleaved
segmented, and interleaved segmented pipelined, respectively. In each case, we add
��� �� to refer to �-ways interleaved with � sub-banks per way.

To estimate the energy consumed in the chip, we have applied scaling-down theory
to data on existing devices reported in the literature, as well as used several techniques
and formulas reported in the literature [6, 17, 19, 20]. We add the contributions of the
processors, clock, memory hierarchies, and other modules. A detailed discussion of
the methods that we have followed can be found in [21]. In [21], we have addition-
ally validated our estimates with CACTI [19] and with published results on the ARM
processor [11].

For the experiments, we use 6 applications that are suitable to the integer-based
PIM chip considered: they access a large memory size, are very parallel, and are integer
based. They come from several industrial sources. We have parallelized each application
into 64 threads by hand.

Table 2 lists the applications and their characteristics. They include the domains of
data mining, neural networks, protein matching, multimedia, and image compression.
Each application runs for several billions of instructions.
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4 Evaluation

The best memory hierarchy organization depends on the metric being optimized. We
consider two metrics: performance and energy-delay product. In our evaluation, we
start with the baseline architecture of Section 3 and then vary it. As a reference, we use
an ideal architecture (Perf): loads and stores are satisfied with zero latency and consume
no energy in the memory system.
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Fig. 3. Effect of the DRAM bank organization on the IPC in systems with 1-Kbyte (a) and 8-
Kbyte (b) data caches.

Maximizing Performance
To compare performance, we measure the average IPC delivered by the combined

64 processors for the duration of the application. We first evaluate the effect of the mem-
ory bank organization. Figure 3 shows the IPC of the applications running on the base-
line architecture for different memory bank organizations. Charts (a) and (b) correspond
to systems with 1- and 8-Kbyte D-caches, respectively. The memory organizations are
ordered from the simpler ones on the left side to the more sophisticated ones on the
right side. Each chart has an Average line that tracks the average of all applications.

Figure 3-(a) shows that performance improves slightly as we move to the more
sophisticated designs. Going from Trad(1,4) to ISP(2,8) increases the IPC by an average
of 8%. However, for 8-Kbyte caches (Figure 3-(b)), the changes are very small. This is
because, with large caches, there are relatively few cache misses and, as a result, the
type of DRAM bank organization matters less.

Comparing the IPC in Perf and ISP(2,8), we see the IPC lost in the most advanced
memory system. This fraction is on average 18% and 11% in Figures 3-(a) and (b).

Figure 5-(a) shows the effect of the cache size and prefetching support. We consider
the baseline architecture with three different DRAM bank organizations: conservative
(Trad(1,4)), aggressive (ISP(2,8)), and in-between (IS(2,4)). The figure shows the IPC
averaged over all applications. We analyze caches of 256 bytes, 1 Kbyte, 8 Kbytes, and
16 Kbytes, all with and without prefetching. For each memory organization, there are
8 bars, labeled with the cache size in bytes followed by P or NP for prefetching or not
prefetching, respectively.
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The best performance is achieved with the largest cache size (16 Kbytes). However,
large caches deliver diminishing returns. The figure also shows that adding the simple
prefetching support considered here makes little difference to performance.
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Fig. 4. Effect of the DRAM bank organization on the energy-delay product in systems with 1-
Kbyte (a) and 8-Kbyte (b) data caches.

Minimizing the Energy-Delay Product
In embedded systems, a common figure of merit is the energy-delay product [2]. A
low product implies that the system is both fast and energy-efficient. Consequently, in
this section, we compare the energy-delay product of the chips with different memory
hierarchy designs. To compute the energy consumed, we add up the contributions of all
the subsystems in the chip.

Figures 4-(a) and 4-(b) show the energy-delay product of the chip under the baseline
architecture for different DRAM bank organizations. Charts (a) and (b) correspond to
systems with 1- and 8-Kbyte D-caches respectively, and are organized as in Figures 3-
(a) and 3-(b). For each application, the charts are normalized to Perf.

In systems with 1-Kbyte caches (Figure 4-(a)), the average energy-delay product
decreases for the more advanced memory organizations. For example, the product in
ISP(2,8) is only 60% of that in Trad(1,4). The reason is that advanced DRAM bank or-
ganizations deliver slightly higher IPCs and consume much less energy in the process.
However, as caches increase to 8 Kbytes (Figure 4-(b)), the changes are smaller. Over-
all, for 8-Kbyte cache systems, only segmentation (going from Trad(1,4) to S(1,4))
makes a significant difference. Supporting interleaving and increasing the number of
sub-banks from (2,4) to (2,8) has only a small effect.

Figure 5-(b) measures the energy-delay product for the average of all applications
for different cache sizes and prefetching support. The bars are normalized to Perf. From
the figure, we see that designs with larger caches tend to have lower energy-delay prod-
ucts. For example, in Trad(1,4), the product with 16-Kbyte caches is about 30% of the
product with 256-byte caches. The reason is that caches have a double effect: they speed
up the program and, in addition, eliminate energy-consuming memory accesses. We ob-
serve, however, that for the more advanced memory organizations and large caches, the
trend reverses: 16-Kbyte caches are slightly worse than 8-Kbyte caches. The reason is
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Fig. 5. Effect of the cache size and prefetching support on IPC (a) and energy-delay product (b).

that the diminishing returns in lower miss rates delivered by larger caches do not com-
pensate for the higher energy consumption that larger caches require. We also see that
simple prefetching does not help.

5 Discussion

In a PIM chip like the one analyzed here, minimizing the energy-delay product is likely
to be the top priority. Our results suggest to use modest-sized D-caches (8 Kbytes), a
simple DRAM bank organization that supports only segmentation, and no prefetching.
Modest-sized caches are effective: they speed-up the application, are energy-efficient,
consume modest area, and render fancy DRAM bank organizations largely unnecessary.
If area is not an issue, the energy-delay product can be improved slightly by supporting
interleaving in the DRAM bank and increasing the number of sub-banks.
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Abstract. Intelligent memory is a new class of computer architecture, to reduce 
the performance gap between the processor and memory. After analyzing a 
region of application, we decide to take “statement” viewpoint to extract more 
potential benefit of program running on intelligent memory architecture. Then 
we develop our SAGE system, a  “statement” base analysis system, different 
from other iteration base system. In this paper, we will describe how SAGE 
split statement and make an acceptable schedule to execute on PHost and 
PMem simultaneously. Finally we will discuss our recently result of this 
approach. 

1  Introduction 

In order to solve the performance gap between the processor and memory and to 
exploit maximum memory bandwidth, many researchers proposed a new class of 
computer architecture: Intelligent Memory [2][6][7][8]. After comparing several 
intelligent memory systems, we decide to adopt UIUC’s FlexRAM [3,10] architecture 
as our basic platform to develop optimization and programming model.  

When examining current Intelligent Memory systems, we find that they usually 
focus on taking fully parallel applications as their benchmarks and spawning a lot of 
PIM processors, like massive multiprocessor systems, to exploit more parallelism. 
However, these results cannot reveal the real benefit of Intelligent Memory. Therefore 
we try to explore another research direction: to improve the performance of general 
application, instead of fully parallelizable ones. Here, we propose our SAGE 
(Statement-Analysis-Grouping-Evaluation) system, a new analysis model with a suite 
of optimizing skills, to extract parallelizable portion of general programs and to 
achieve better load balance between PHost and PMem. 

In our recent experimental results, quite good speedup is obtained, which exceeds 
the limitation of computation capability of PMem, in one-PHost-one-PMem 
environment. In what follows, we will briefly describe analysis stages of SAGE first, 
then present algorithms and an example to demonstrate how it works. Finally, we will 
discuss our experimental results of synthetic example and two real benchmark 
programs in SPEC 95 and BLAS3. 
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2  Intelligent Memory Architecture 

A general view of the FlexRAM [3,10] architecture is shown in Figure 1. Each 
FlexRAM chip has 1 PMem and 64 PArray memory processors. The host processor of 
the target workstation is called PHost. The architecture parameters are listed in Table 
1. 

In order to simplify the problem and exploit the benefits of PIM architectures, in 
this paper, we only consider the system with a single host processor (PHost) and a 
single memory processor (PMem). We are in process of extending our SAGE system 
to fit more complicated PIM architectures. 

3  System Organization 

The organization of SAGE is shown in Figure 2.  This system will provide four major 
advantages. First, instead of iteration, SAGE adopts simple-statement loop as the 
basic execution unit. This different approach will provide a novel methodology to find 
better schedule in procedure-level parallelism. Second, for its simple, flexible 
optimizing stages, SAGE can cooperate with other traditional iteration-base analysis 
systems (such as UIUC’s Polaris) to explore the potential parallelism easily. Third, 
from its heuristic scheduling mechanism, SAGE can generate suitable execution 
procedures and dispatch them to PHost and PMem in accordance with practical 
system configuration. Fourth, programmers can use this analysis model easily to 
develop their applications for FlexRAM or restructure the original sequential (or 
parallel) program into a load-balanced, task- separated form. The following of this 
section we will describe some important stages of this system. 

In te r-C h ip  N e tw o rk

L 1 ,L 2  C a ch e s

P .H o st

P la in
D R A M

P .M e m

C a ch e s

P .A rra y

D R A M

F le x R A M
 

Fig. 1. The organization of FlexRAM 
architecture. 

Table 1. Parameters of the FlexRAM architecture. 

P.Host P.Host L1 & L2 Bus & Memory 

Freq: 800 MHz 
Issue Width: 6 
Dyn Issue: Yes 
I-Window Size: 96 
Ld/St Units: 2 
Int Units: 6 
FP Units: 4 
Pending Ld/St: 8/8 
BR Penalty: 4 cyc 

L1 Size: 32 KB 
L1 RT: 2.5 ns 
L1 Assoc: 2 
L1 Line: 64 B 
L2 Size: 256 KB 
L2 RT: 12.5 ns 
L2 Assoc: 4 
L2 Line: 64 B 

Bus: Split Trans 
Bus Width: 16 B 
Bus Freq: 100 MHz 
PHost Mem RT: 

262.5 ns 
PMem Mem RT: 
50.5 ns 

P.Mem P.Mem L1 P.Array 

Freq: 400 MHz 
Issue Width: 2 
Dyn Issue: No 
Ld/St Units: 2 
Int Units: 2 
FP Units: 2 
Pending Ld/St: 8/8 
BR Penalty: 2 cyc 

L1 Size: 16 KB 
L1 RT: 2.5 ns 
L1 Assoc: 2 
L1 Line: 32 B 
L2 Cache: No 

Freq: 400 MHz 
Issue Width: 1 
Dyn Issue: No 
Pending St: 1 
Row Buffers: 3 
RB Size: 2 KB 
RB Hit: 10 ns 
RB Miss: 20 ns 
RB Penalty: 2 cyc 

* BR stands for branch, RT for round-trip latency from 
the processor, and RB for row buffer. 
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3.1 Statement Splitting 

In this stage, we use Loop Distribution [1][4] ,a well-known transformation of 
parallelizing techniques, to split original dependence graph by construct our Weighted 
Partition Dependence Graph (WPG). Then it will be applied in our following 
optimization and scheduling stages.  

Definition 1 (Loop Denotation) [4] 

A loop is denoted by  L = ( 1I , 2I ,…….. dI )( 1S , 2S ,…….. kS ), where jI  is a loop 

index, and jS  is a body statement which maybe an assignment statement or another 

loop. 

Definition 2 ( Node Partition Π ) [4] 

On the dependence graph G , for a given loop L, we define a node partition Π  of 

{ 1S , 2S ,…….. dS } in such a way that kS and lS , lk ≠ , are in the same subset if and 

only if lk SS ∆ and kl SS ∆ , where ∆ is an indirectly data dependent relation. On the 

partition Π ={ 1π , 2π }, we defined partial ordering relationsα ,α , and oα , such 

that for i ≠ j

1) iπ α jπ iff there exist ikS π∈ and jlS π∈  such that lk SS δ , whereδ  is true 

dependence relation .  

P rogram
A nalysis
an d  P re-

O p tim ization

L egality
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S tatem en t
Sp litting

 W PG  B u ild in g

 W avefron t
G en eratin g
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D eterm in ation
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G en eratin g

Su broutine
O p tim ization

L oad  B alance
A dju stm ent

Sta tem ent
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Pa ralle liza t-
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S o u rce
P ro g ra m

S u b ro u tin e
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P H o s t

S u b ro u tin e
fo r

P M e m

Fig. 2.   Analysis and optimization stages of SAGE system. 
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2) iπ α jπ iff there exist ikS π∈  and jlS π∈  such that lk SS δ where δ  is 

anti dependence relation. 

3) iπ oα jπ iff there exist ikS π∈  and jlS π∈ such that lk SS 0δ where 0δ  is 

output dependence relation. 

Definition 3 (Weighted Partition Dependence Graph) 

For a given node partition Π  as in Definition 2, we define a weighted partition 

dependence graph WPG(P,E). In WPG node Ppi ∈ , ip ( iI , iS , iW , iO ) represents 

a partition Π∈iπ where iI , iS  are the same as Definition 1, iW (PH,PM) denotes 

the PHost/PMem weight value of this node , iO  denotes the execution order of this 

node.

Algorithm 1. (Statement Splitting Algorithm) 

Given a loop L = ( 1I , 2I ,…….. dI )( 1S , 2S ,…….. dS )

Step1: By analyzing subscript expressions and indexing pattern construct a 
dependence Graph G 

Step2: On G establish a node partition Π  as in Definition 2. If there are some large 
partition caused by control dependent relations, we use some approach to 
transfer control dependence to data dependence[5] and then partitioning it 
as above. 

Step3: On the partition Π establish a weighted partition dependence graph 
WPG(P,E) as in Definition 3 

3.2 Wavefront Generating and Scheduling 

In this section, we propose an algorithm for the scheduling of PHost and PMem. In 
our method, the weights of the blocks in partition P are determined first, then the 
execution order for each block is determined according to their dependence relation 
and lexicographic order. The blocks that can be executed simultaneously are assigned 
in a wavefront. The blocks in the same wavefront are scheduled on PHost and PMem 
processors based on the weights of them. 

4  Example 

To illustrate how to analyze and optimize program by SAGE system, we take a simple 
program as example, which is shown in Figure 3. Assume that this program contains 
three major loops: 



164      Tsung-Chuan Huang and Slo-Li Chu 

Algorithm 2. (Weighting and Scheduling Algorithm)  

[Input] 
WPG=(P(I,S,W,O),E), the original weighted partition dependence graph without 

weight W (PH,PM) and order O assignment. 

[Output] 
 A Execution wavefront schedule ....},{ 21 WfWfWf =  where 

)}.....(),...({ lkjii PPPMPPPHWf = , )....( ji PPPH denoted that partitions for 

PHost execute in wavefront i, iW  denoted that partitions for PMem 

execute in wavefront i.

[Intermediate] 
   W is a working set of nodes ready to visit  
   max_wf is the maximum number of wavefront  

   max_pred_O( ip ) is maximum execution order value iO  of all ip ’s predecessor 

partitions  

   PHW( ip ) is PHost weight value of ip

   PMW( ip ) is PMem weight value of ip

[Algorithm]   

/*Initialization and identifing weight */       

for each ∋i Ppi ∈ do begin

iW (PH,PM)= determine_weight ( iI , iS )

iO = 0 

end for 

/* Determining Execution Order */ 

for each ∋i ip that has no predecessors do begin

iO = 1 

   W=W-{ ip }

end for
done = False 
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while done = False AND W 2S φ do begin
     done=True

for each ∋i ip ∈W do begin

if max_pred_O( ip )=0 then

            done=False 
else

iO = max_pred_O( ip )+1

            W=W-{ ip }

            max_wf= iO
end if

end for
end while 

/*Scheduling*/ 

wf=1 /* current wavefront number */ 

for wf=1 to max_wf 

   pick all ∋i iO =wf , store all ip  in wf_tmp 

while done = False do begin
          done = False 
          divide wf_tmp into two arbitrary subsets a, b
               /* here ba ∪ =wf_tmp. ba ∩ =φ  */ 

if )()( bPHWaPHW −  is minimal of all possible a, b . then

)}(),({)( bPHaPHWf wf =
                  done=Ture 

end if
end while

end for

Firstly, the preliminary analysis and pre-optimization are applied, then statements 
are separated. According to the results of legality analysis, we can distinguish which 
statement can be split. The statement unable to be split will keep the original form.. 
All other statements will be split into a single-statement loop. Figure 4. shows the 
results of loop 2 after statement splitting. 
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DO I = 1 TO N 
DO J = 1 TO M 

S1:   A(I,J) = B(I,J)+C(I,J) 
S2:   A(I,J) = A(I-1,J)+A(I+1,J)+C  
S3:   X = A(I,J)+2 
S4:   Y = X*C 
S5:   D(I,J) = 2*D(I,J)+3 
S6:   E(I,J) = 2*E(I,J)+2 

ENDDO 
ENDDO 

(a) Loop 1 

DO J = 1 TO N 
DO I = 1 TO M 

S7: F(I,J) = E(I,J)*F(I,J) 
S8: F(I,J+1) = F(I,J)+5 
S9: G(I,J) = G(I-1,J)*G(I,J-1) 

ENDDO 
ENDDO 

(b) Loop 2 

DO I = 1 TO N 
DO J = 1 TO M 

S10: Z = A(I,J)+A(I,J-1) 
S11: A(I,J) = Z*C 

ENDDO 
ENDDO 

(c) Loop 3 

Fig. 3. A simple program with three individual loops. 

DO J = 1 TO N 
DO I = 1 TO M  

S7: F(I,J) = E(I,J)*F(I,J)         •   b4 
ENDDO 

ENDDO 

DO J = 1 TO N 
DO I = 1 TO M  

S8:  F(I,J+1) = F(I,J)+5           •  b5    
ENDDO 

ENDDO 

DO J = 1 TO N 
DO I = 1 TO M  

S9: G(I,J) = G(I-1,J)*G(I,J-1)  •  b6 
ENDDO 

ENDDO 

        Fig. 4. Result of loop 2 after statement splitting. 

I = { N , M }
S={S1 ,S2 ,

S3 ,S4}

W = { 4 2 , 4 9 } O = 1

b 1
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b 2
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W = { 1 2 , 1 4 } O = 1
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I = { N , M } S = { S 8 }
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I = { N , M }
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S 1 1 }
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b 7

Wavefront  1

Wavef ront  2

Wavef ront  3
Fig. 5. WPG graph before SAGE generates execution schedule. 
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The Weighted Partition Dependence Graph (WPG) can be drawn as in Figure 5. 
After the manipulation of scheduling stage (cf. Algorithm 2), the system will generate 
the good execution schedule: WF(1) = {PH (b1) ,PM(b2, b3, b6)}, WF(2)={PH(b4), 
PM(b7)}, WF(3)={PH(b5)} using Algorithm 3 according to the PHost and PMem’s 
computation power and characteristics. 

5  Experimental Results 

The code generated by SAGE is targeted to FlexRAM simulator [3,10] developed by 
IA-COMA Lab in UIUC. This simulation environment models dynamic superscalar 
multiprocessor and detailed memory behaviors cycle by cycle. The detailed 
configuration is shown in Table 1. In addition to the original PHost processor, we 
only spawn one PMem processor. In order to reflect the advantages of FlexRAM, we 
also experiment on the general heterogeneous environments with two processors, in 
which the co-processor is identical to PMem other than its weak memory access 
capability (because it is not in the memory). 

   The applications evaluated include four programs: swim is from SPEC95, 
strmm is from BLAS3, and example is the synthetic program we proposed in this 
paper. Table 2 shows the execution time for these three applications. 

The approximated performance ratio between PHost and PMem is 8:1. This 
means that if PMem works with PHost simultaneously, the speedup will be up to 
1.125 theoretically. But we get more than 1.125 in Table 2. The reason to explain this 
result is that PMem has shorter memory access latency.  This attests the major 
objective of Intelligent Memory system: to reduce the performance gap between 
processor and memory. 

 
Table 2. Performance results of three programs: swim (SPEC95), strmm (BLAS3), and our 
demonstration example. 

 
Benchmarks P.Host Exec. 

Cycles 
Optimized 
Cycles 

Speed UP 
/P.Host 

swim 86144754 64190746 1.342  

hstrmm 107235775 76868804 1.395  

example 10129486 6889560 1.470  

6  Conclusion 

In this paper, we propose statement spitting and scheduling mechanisms for 
intelligent memory architectures to exploit the computing power of the host and 
memory processors. The algorithms are general enough, not only for FlexRAM 
architecture but also can be applied on heterogeneous mix of processors systems. We 
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hope this system will provide a reference for other researchers who intend to develop 
new optimization and parallelization techniques for Intelligent Memory. 
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1 Introduction

Integrating main memory (DRAM) and processors into a single chip, or merged
DRAM/logic LSI, makes it possible to exploit high on-chip memory bandwidth
by widening on-chip bus and on-chip DRAM array. In addition, from energy
point of view, the integration brings a significant improvement by decreasing
the number of off-chip accesses.

For merged DRAM/logic LSIs with on-chip cache memory, we can exploit the
high bandwidth by means of replacing a whole cache line at a time. This approach
tends to increase the cache-line size if we attempt to exploit the attainable
high bandwidth. A large cache-line size gives a benefit of prefetching effect if
programs have rich spatial locality. Otherwise, however, it will bring the following
disadvantages due to poor spatial locality:

1. A number of conflict misses will take place due to frequent evictions.
2. As a result, a lot of energy will be wasted for on-chip DRAM (main memory)

due to a number of main memory accesses.
3. Activating the wide on-chip bus and the DRAM array will also dissipate a

lot of energy.

Employing set-associative caches is a conventional approach to solving the first
and second problems, because it can improve cache-hit rates by reducing conflict
misses. However, since increasing the cache associativity increases cache-access
time and energy, it might worsen the performance/energy efficiency of memory
systems. In addition, we still have the third problem.

In order to solve all the problems without any cache-access time and energy
overheads, we have proposed the variable line-size cache (VLS cache) archi-
tecture for merged DRAM/logic LSIs [3] [4]. The VLS cache exploits the high
bandwidth by means of larger cache lines. At the same time, it can alleviate
the negative effects of large cache line by partitioning it into multiple small
cache lines (sublines). Activating only the DRAM subarrays corresponding to
the sublines to be replaced makes a significant energy reduction. In [3] [4], we

F.T. Chong, C. Kozyrakris, and M. Oskin (Eds.): IMS 2000, LNCS 2107, pp. 169–178, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 1. Mechanism of Variable Line-Size Cache

have discussed only the performance attainable in the VLS cache. This paper
evaluates both the performance and energy improvements achieved by the VLS
cache architecture.

2 Variable Line-Size Cache Architectures

2.1 Concept

In the VLS cache, an SRAM-cell array (cache) and a DRAM-cell array (main
memory) are divided into several subarrays. Data transfer for cache replacements
is performed between corresponding SRAM and DRAM subarrays. A block of
data associated with a single tag in the cache is referred as subline. Line is a
block of data transferred between cache and main-memory for replacements.

Fig. 1 shows the mechanism of variable line-size cache. If programs have rich
spatial locality, a line consists of many sublines and a large number of sublines
would be involved on cache replacements. Contrarily, a few number of sublines
would be replaced when programs have poor spatial locality. In case of Fig. 1, the
cache-line sizes of 32-byte, 64-byte, and 128-byte are provided. Activating the
DRAM subarrays and the on-chip buses corresponding to the replaced sublines
reduces the energy consumed for accessing to the on-chip main memory.

The effectiveness of VLS cache depends on how much the cache can choose
appropriate line sizes (i.e., the number of sublines to be replaced). There are at
least two approaches to the line size optimization: one is a static determination
based on prior analysis; the other is a dynamic determination using hardware
supports.

2.2 Statically Variable Line-Size Cache

The statically variable line-size cache (S-VLS cache) changes its line size program
by program [3]. Application programs are analyzed by using cache simulators
in advance in order to determine an appropriate line size. In case that the S-
VLS cache provides 32-byte, 64-byte, and 128-byte lines, for example, we can
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determine the appropriate line size in the following manner. First, the program
is simulated three times to measure cache-hit rates, each of which assumes one
of fixed 32-byte, 64-byte, and 128-byte line sizes. Then we choose the best line
size as the appropriate line size. The line-size information might be explicitly
designated by a control register.

2.3 Dynamically Variable Line-Size Cache

It may be possible to adopt the static approach explained in Section 2.2 when tar-
get programs have regular access patterns within well-structured loops. However,
a number of programs have non-regular access patterns. In addition, the amount
of spatial locality may vary both within and among program executions. Against
the static approach, the dynamically variable line-size cache (D-VLS cache) se-
lects adequate line sizes based on recently observed data reference behavior at
run time. Fig. 2 illustrates the block diagram of a direct-mapped D-VLS cache
having three line sizes, 32 bytes, 64 bytes, and 128 bytes. The cache has some
hardware components for optimizing the line size. Tag comparison is performed
at each subarray. The details of D-VLS cache behavior and an algorithm opti-
mizing the cache-line size have been described in [4].
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3 Evaluations

We have evaluated the performance/energy efficiency of on-chip memory systems
employing the following conventional and VLS caches:

– Fix128 and Fix128W2 : 16 KB conventional caches having fixed 128-byte
cache lines. Fix128 is a direct-mapped cache and Fix128W2 is a 2-way set-
associative cache.

– Fix128db : 32 KB conventional direct-mapped cache having fixed 128-byte
cache lines.

– SVLS128-32 and DVLS128-32 : 16 KB direct-mapped variable line-size caches
having 32-byte, 64-byte, and 128-byte cache lines. Line-size optimizations for
them are based on the static approach (SVLS) explained in Section 2.2 and
the dynamic approach(DVLS) explained in Section 2.3, respectively.

We have measured cache-miss rates and line-replacement counts for each model
using benchmark programs: seven integer programs with train input and two
floating-point programs with test input from the SPEC95 benchmark suite. Fur-
thermore, to realize more realistic execution on general purpose processors, a
benchmark set (Mix-IntFp) is used. The programs in the benchmark set are
assumed to run in multiprogram manner on a uni-processor system, and a con-
text switch occurs per execution of one million instructions. Mix-IntFp is formed
by two integer programs and one floating-point program, and three billion in-
structions are executed. All programs are compiled by GNU CC with the “–O2”
option, and are executed on Ultra SPARC workstations. The address traces are
captured by QPT [2]. In this evaluation, we have introduced AMAT (Aver-
age Memory Access Time) and AMAE (Average Memory Access Energy) as
performance and energy metrics of memory systems.

AMAT = TCache + MissRate × 2 × TMainMemory. (1)

AMAE = ECache + MissRate × 2 × EMainMemory. (2)

TCache and ECache are access time and energy consumption for cache, and
TMainMemory and EMainMemory are access time and energy consumption for
main memory, respectively. We have assumed that two main-memory accesses
are performed for a cache replacement (one for write-back and one for cache
refill).

3.1 Cache-Access Time and Energy

The structure of direct-mapped VLS caches having 32-byte, 64-byte, and 128-
byte lines is similar to that of conventional set-associative caches having 32-byte
lines as shown in Fig. 2. In the conventional set-associative cache, the path which
chooses a way based on tag-comparison results determines the cache-access time.
However, that critical path does not appear in the VLS caches because the target
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Table 1. Cache-Access Time and Energy

Cache TCache [Tunit] ECache [Eunit]
Fix128 1.000 1.000

Fix128W2 1.470 1.160
Fix128db 1.195 1.838

SVLS128-32 1.000 1.051
DVLS128-32 1.000 1.090

subarray can be chosen regardless of tag-comparison results. Namely, control
signals for the subarray selection are made from the reference address directly.
Therefore, we assume that the cache-access time of direct-mapped VLS caches
(SVLS128-32, DVLS128-32) is the same as that of conventional direct-mapped
cache having same cache size and same associativity (Fix128).

Increasing cache associativity consumes more energy because it increases the
total number of bit-lines, precharging circuits, sense amplifiers, and so on. Sim-
ilarly, increasing the cache size dissipates a lot of energy due to the increase in
bit-line capacitances. On the other hand, the VLS caches do not have this kind
of energy overheads, because the cache size and associativity of Fix128 are main-
tained. The VLS caches need to dissipate the energy for extra tag comparisons;
a tag comparison is performed at each subarray. However, the total number of
bit-lines to be activated for a tag-memory access is much smaller than that for
a data-memory (cache line) access. Therefore, the energy overhead for the extra
tag comparison is small. In addition, although the D-VLS cache needs to read a
2-bit LSS (line-size specifier) and four 1-bit reference flags for run-time line-size
optimization, this energy overhead is also trivial.

To find the cache-access time of each model, we have used the CACTI 2.0
which is the updated version of CACTI model [5] [8]. In addition, we have cal-
culated the cache-access energy for each organization based on Kamble’s model
[6]. We referred the load capacitance of each node defined in [7], which is based
on the 0.8 micron CMOS cache design described in [8]. In this evaluation, we
refer to the cache-access time and cache-access energy of Fix128 as Tunit and
Eunit, respectively. Table 1 summarizes calculation results.

3.2 Cache-Miss Rate

Table 2 shows cache-miss rates on conventional and VLS caches. For some pro-
grams, the VLS caches (SVLS128-32, DVLS128-32) can achieve almost all the
same or lower cache-miss rates than the double-size conventional direct-mapped
cache (Fix128db). However, increasing associativity produces much better results
for many programs. In average, conventional approaches to improving cache per-
formance, increasing cache size (Fix128db) or cache associativity (Fix128W2),
achieve lower cache-miss rates than the VLS caches.
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Table 2. Cache-Miss Rates

Program Fix128 Fix128W2 Fix128db SVLS128-32 DVLS128-32
099.go 0.1024 0.0695 0.0541 0.0571 0.0638

124.m88ksim 0.0202 0.0045 0.0068 0.0167 0.0153
126.gcc 0.0611 0.0344 0.0349 0.0535 0.0526
130.li 0.0341 0.0203 0.0226 0.0341 0.0358

132.ijpeg 0.0244 0.0048 0.0068 0.0195 0.0175
134.perl 0.0542 0.0230 0.0295 0.0332 0.0286

147.vortex 0.0505 0.0292 0.0307 0.0361 0.0374
101.tomcatv 0.0633 0.0182 0.0546 0.0633 0.0578
104.hydro2d 0.0481 0.0217 0.0259 0.0481 0.0295
Mix-IntFp 0.0597 0.0327 0.0311 0.0452 0.0377

3.3 Main-Memory-Access Time and Energy

The main-memory-access time (TMainMemory) and energy (EMainMemory) de-
pend on the memory size, organization, process technology, and so on. In this
evaluation, we assume that the main-memory-access time including the delay for
data transfer between the cache and the main memory is ten times longer than
the access time of the 16 KB direct-mapped conventional cache having 128-byte
lines (i.e., TMainMemory = 10 × Tunit).

For the main-memory-access energy (EMainMemory), we assume that there
is no energy dissipation for DRAM refresh operations in order to simplify the
evaluation. Thus, for the on-chip memory-path architectures with a conven-
tional cache, energy dissipated for main-memory accesses (i.e., MissRate × 2 ×
EMainMemory) depends only on the total number of main-memory accesses. In
other words, only cache-miss rates affect the main-memory-access energy. On the
other hand, since the VLS caches activate only the DRAM subarrays correspond-
ing to sublines to be replaced, the energy consumed for accessing to the on-chip
main memory depends not only on cache-miss rates but also on line sizes (i.e.,
the number of sublines to be involved in cache replacements). Accordingly, the
main-memory-access energy (EMainMemory) in Equation (2) can be expressed
as follow:

EMainMemory = 10 × Eunit × AverageLineSize

128bytes
. (3)

Here, we assume that the energy dissipated for an access to the 128-byte width
on-chip DRAM is ten times larger than the cache-access energy of Fix128 [1].
The right factor (AverageLineSize

128bytes ) in Equation (3) denotes a coefficient which
represents the average number of 32-byte DRAM subarrays activated per cache
replacement. The average line size of conventional caches is 128 bytes, so that
the value of the coefficient is 1. While that of VLS caches depends on the charac-
teristics of programs. For instance, if the average line size is 64 bytes, the value
of the coefficient is 0.5.
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Table 3. Average Line Size and Replace Count on VLS caches

S-VLS D-VLS
Program Ave. Line Replace Count Ave. Line

Size [B] 32 [B] 64 [B] 128 [B] Size [B]
099.go 32.00 6,445,160 1,724,674 389,746 42.82

124.m88ksim 64.00 317,746 53,858 68,353 50.83

126.gcc 64.00 10,092,540 3,463,487 1,468,861 48.76

130.li 128.00 1,190,072 426,488 189,570 49.63

132.ijpeg 64.00 3,530,649 1,179,064 1,246,695 58.43

134.perl 32.00 7,987,886 5,250,134 3,849,457 63.46

147.vortex 32.00 19,805,372 3,593,130 1,416,595 42.11

101.tomcatv 128.00 23,539,313 2,608,352 2,650,269 43.73

104.hydro2d 128.00 3,784,227 860,802 6,175,600 89.34

Mix-IntFp 82.60 17,005,515 4,564,846 7,577,526 61.97

Table 3 shows the average line size on the S-VLS cache (SVLS128-32) and
the D-VLS cache (DVLS128-32) for each program. The table also reports the
breakdown of cache-replacement count for each line size in the D-VLS cache, and
the minimum and maximum average cache-line sizes are 42.82 bytes for 099.go
and 89.34 bytes for 104.hydro2d, respectively. For all programs, average line size
of the S-VLS cache is 75 bytes, and that of D-VLS cache is 55 bytes.

Fig. 3 depicts the energy consumed for accessing to the on-chip main mem-
ory (CMR × 2 × EMainMemory). All results are normalized to the memory sys-
tem employing the 16 KB conventional direct-mapped cache having 128-byte
lines (Fix128). Although the cache-miss rates of the VLS caches are higher than
those of the conventional caches (Fix128W2, Fix128db), the VLS caches make
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significant advantages of energy reduction by reducing both the total number of
main-memory accesses and that of DRAM subarrays activated. For Mix-IntFp,
the D-VLS cache (DVLS128-32) produces about 70 % main-memory energy re-
duction from the base organization (Fix128), which is about 20 % better than
the low-miss-rate conventional caches (Fix128W2, Fix128db).

3.4 Performance/Energy Efficiency

Fig. 4 (A) shows the performance (AMAT ) of each memory system in case that
the access time of on-chip DRAM is ten times longer than Tunit. Increasing asso-
ciativity improves cache-miss rates. However, Fix128W2 does not produce good
result for some programs due to the cache-access-time overhead. On the other
hand, the VLS caches can maintain the fast access of direct mapping. Thus, in
all programs except for 101.tomcatv, the VLS caches make significant perfor-
mance improvements, which are comparable with the doubled size conventional
direct-mapped cache (Fix128db).

Fig. 4 (B) shows energy consumption (AMAE) of each memory system in
case that the energy consumed for accessing to on-chip DRAM is ten times
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larger than Eunit. The conventional approaches to improving cache performance
(Fix128W2, Fix128db) reduce cache-miss rates, so that the main-memory-access
energy is reduced from the base organization (Fix128). However, Fix128db de-
grades the total energy efficiency because the cache-access energy is large. In
conventional caches, Fix128W2 produces the best results for all programs. On
the other hand, the VLS caches can make energy reductions for main-memory ac-
cesses by improving cache-hit rates and by activating on-chip DRAM subararys
selectively without large cache-access-energy overhead. Thus, the VLS caches
make significant energy reductions. In particular, the D-VLS cache (DVLS128-
32) achieves lower energy for all programs than Fix128W2 which is the best
organization of conventional approaches.

Finally, in Fig. 5, we show the energy-delay product to evaluate the perfor-
mance and energy at the same time. For each program, all results are normalized
to Fix128. In conventional caches, the performance improvement achieved by in-
creasing cache size (Fix128db) is negated by the large energy dissipation. Con-
trarily, energy improvement produced by increasing associativity (Fix128W2) is
negated by low-performance due to long cache-access time. The VLS caches do
not have this kind of negations because they can produce both the performance
and energy improvements. In the best case of 099.go, the VLS caches reduce
the energy-delay product more than 60 % from the conventional direct-mapped
cache (Fix128). While the reductions produced by conventional approaches, in-
creasing cache associativity or cache size, are from 20 % to 30 %.

4 Conclusions

In this paper, we have described the variable line-size cache (VLS cache), which
is a novel cache architecture suitable for merged DRAM/logic LSIs. To eval-
uate the performance/energy efficiency of the VLS caches, we have simulated
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many benchmark programs on the VLS caches and on conventional caches. In
the simulation results for Mix-IntFp benchmark set which includes two integer
programs and one floating-point program, it is observed that a statically VLS
cache and a dynamically VLS cache reduce the energy-delay product by 35 %
and 47 %, respectively, compared to a conventional cache having the same cache
size and the same associativity.

Employing merged DRAM/logic LSIs is one of the most important approaches
for future computer systems, because it can achieve high-performance and low-
power at the same time by eliminating the chip boundary between the processor
and main memory. We can obtain more improvement of performance/energy ef-
ficiency by exploiting the attainable high on-chip memory bandwidth effectively.
The VLS cache architecture is applicable to any merged DRAM/logic LSIs. In
particular, the dynamically VLS cache is more promising. Because it does not
require any modification of instruction set architectures, the full compatibility
of existing object codes can be kept.
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1 Introduction 

DIVA (Data IntensiVe Architecture), employs Embedded DRAM (EDRAM) technolo-
gy [Iyer99] to overcome memory bandwidth limitations by tightly coupling a single
processor to a large on-chip storage array to produce a device capable of dual roles as
system “smart” and “dumb” memory. Communication between “nodes” (processor-
memory pairs) occurs on a special chip-to-chip interconnect, off-loading the system
memory bus. Coarse-grain parallelism may be further extended by implementing mul-
tiple processor-memory “nodes” per PIM chip. The DIVA system will employ PIMs in
a workstation “smart memory” system capable of large amounts of processing. 

The DIVA emulator is a programmable logic resource for accelerating detailed evalua-
tion of PIM architecture. Based on commercial FPGAs, the emulated logic model di-
rectly executes code at least 50 times faster, and at much finer granularity, than our sim-
ulator. As a result. the emulator provides a platform for early development of system
software and evaluation of algorithms that exploit the fine-grain parallelism available
in DIVA PIMs.

1.1 Overview of DIVA System Architecture
Figure 1 shows the major control and data connections within a processor-memory
node. Information flows into and out of the node via the communication port or the host
memory port. The heart of the DIVA node is a wide data bus used for all transfers be-
tween major functional units. Arbitration between the host and the node adds insignif-
icant delay to the host memory access time when the PIMs are used as conventional
memory.

Node processing logic consists of an execution control pipeline to coordinate the activ-
ity of a standard 32-bit integer scalar datapath (registers plus ALU), a 64-bit floating
point datapath, and a special 256-bit WideWord datapath that processes data at the
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memory bandwidth. Register-register moves between datapaths are supported for effi-
cient interaction between different types of processing. The execution control pipeline,
scalar datapath, and floating point datapath may be viewed as a conventional micro-
processor and can be programmed as such, enabling evolutionary software develop-
ment. Users may also exploit coarse-grain parallelism offered by the PIMs by simply
programming multiple nodes in a conventional sense. However, users may also exploit
fine-grain parallelism by using the WideWord datapath. Further DIVA architectural de-
tails can be found in [Hall99].

1.2 Simulation 
Several forms of software simulation are well known. High-level simulators mimic sys-
tem behavior, but deliver information at the input/output level only. Register-transfer-
level simulators maintain state information for the functional modules used in a system.
Gate-level simulators use very fine-grain models to describe the system at the lowest
level of detail - the logic gates used to implement major units. This 1:1 mapping be-
tween model and target, or fidelity, minimizes the chance of error during physical sys-
tem design and implementation. Unfortunately, the computing power needed to execute
such simulations and manage required information stresses the capabilities of advanced
workstations, resulting in very long simulation times. DSIM, the DIVA simulator de-
rived from RSIM, executes approximately twenty-five thousand instructions per second
on a SUN Ultra20 workstation. The need for efficient system verification justifies the
cost of developing of specialized hardware emulators.

1.3 Emulation 
Emulation models systems in hardware quite different from the target implementation.
Emulators based on reprogrammable logic devices allow new logic configurations to be
assessed on a single platform. Reconfigurable application-specific computing can be
considered an extreme case of emulation: features of a computation - hardware and soft-
ware - not required by a given application are optimized away during the compilation
process. The most accurate type of emulation is gate-level, which provides a hardware
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model for each fine-grain logic element to rapidly execute the desired functions of the
anticipated system. There are drawbacks to this high-fidelity approach, however, as
very large amounts of reconfigurable hardware resources can be required. EETimes
published an account where the first Intel Pentium was emulated with a reconfigurable
platform that required 100 square feet of floor space.

2 The DIVA Emulator

The DIVA emulator mimics the behavior of the DIVA VLSI PIM node at a moderate
clock rate (up to ten million instructions per second). Some tradeoffs are required be-
cause the Xilinx “Virtex” FPGA devices do not provide a substrate of “gates” for con-
structing logic, meaning the emulation must sacrifice some fine-grain fidelity. Original-
ly intended to model four nodes, the current version supports a maximum of two be-
cause the WideWord (256-bit) datapath logic consumes FPGA resources, requiring the
node processor to be partitioned across multiple devices. However, per-clock fidelity is
maintained, so that at each user-visible time marker all state information available to the
debugging support environment is indistinguishable from that of the anticipated VLSI
device. This fidelity ensures that program code compiled for the VLSI PIM will run and
produce identical results on the emulator hardware, giving architects a platform for rap-
idly evaluating design trade-offs. 

2.1 Physical Implementation
The DIVA emulator is implemented on a full-size PCI card and mezzanine board. These
boards contain all logic required for system bus interface, power conversion and mon-
itoring circuits, as well as FPGAs with dedicated DRAM and SRAM to support emula-
tion of complex circuits of up to several million gates.

Circuit topology is constrained by printed-circuit interconnect, physical packaging of
the commercial devices, and pin limitations of the FPGAs. DRAM is implemented as
64 bit words per FPGA, requiring WideWord memory accesses to be emulated by quad-
word read and write operations. These are controlled by “microstates,” invisible to the
user, within the instruction clock cycle. Microstates also define the protocol used to pass
data between the FPGAs of the emulator: at different points in time, instructions, scalar
(32-bit) data, and WideWord ALU condition codes are transmitted over the limited in-
terconnect available for this communication.

As shown in Figure 2, the emulator board has ports for the PIM-to-PIM communication
channels, enabling emulation of PIM arrays. The communication logic is emulated sep-
arately from node logic. The narrow paths between FPGAs also require use of micro-
states to mimic single-clock PIM communication events. The emulator also has a port
for a host memory bus interface. The goal of this feature is to use the emulator in situ
with the host system, operating as a very slow DRAM. The implementation of these in-
terfaces is pending.
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2.2 Operation
Users develop a logic description in VHDL, compile it, and load the resulting configu-
ration file into the emulators FPGAs via a Linux user interface. This software also pro-
vides the user with direct fine-grain control and monitoring of the logic embedded in
the FPGAs. A well-understood DSP application has been demonstrated and is used as
a benchmark to evaluate changes to the user interface as well as determine emulator per-
formance.

3 Summary and Conclusion

This paper describes the DIVA PIM hardware emulator, designed to evaluate architec-
tural features of a new PIM smart-memory coprocessor for a conventional host system.
We briefly describe the target architecture, the emulator platform and system support
software, and an example of applications run on the emulated logic. With the emulator
running at an extreme worst-case speed of one million instructions per second, we
achieve execution speedup factors over fifty at a level of detail unapproachable by soft-
ware simulation techniques.

The DIVA emulator is a work in progress, with new logic functions being added on a
regular basis. The evaluation environment runs several large-scale application exploit-
ing processing with the wide datapaths. In the future, we also plan to implement IEEE
32- and 64-bit floating point operation.
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Abstract. The performance of a computer system is highly dependent
on the performance of the cache memory system. The traditional cache
memory system has an organization with a line size that is fixed at
design time. Miss rates for different applications can be improved if the
line size could be adjusted dynamically at run time. We propose a system
where the compiler can set the cache line size for different portions of the
program and we show that the miss rate is greatly reduced as a result of
this dynamic resizing.

1 Introduction

The area available for on–chip caches is limited and the size and associativity of
a cache for a given processor cannot be significantly increased without causing
an increase in the cycle time. Currently in a given technology implementation
processor designers decide the size of cache lines by considering different tradeoffs
between speed and latency. But this tradeoff also influences the miss rate of the
cache system. We show that this decision has a great impact on the miss rate of
the memory system.

We propose a simple system that allows the cache line size to vary at run
time. To achieve this we augment the ISA with a single extra instruction that
sets the line size. A compiler can insert this instruction in the code at points it
determines suitable by either static code analysis or profile–directed feedback.

While the hardware modifications are modest, the following questions need
to be answered to determine the feasibility of the approach:

1. When should the cache line size be changed,
2. How often is it necessary to reconfigure,
3. What is the optimal reconfiguration policy?

On one hand it would not be feasible to change the cache line size every few
instructions as the overhead associated with such reconfiguration would make
� This work was supported in part by the DARPA ITO under Grant DABT63-98-C-

0045.
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the approach prohibitively expensive. On the other hand if we reconfigure too
infrequently, e.g. once per function call, we might miss some optimization oppor-
tunities because a function may contain a number of loops, each of them with a
distinct cache behavior.

It has been shown that the majority of dynamic instructions in a program
are executed in innermost loops. An inner loop is also likely to have reasonably
stable spatial/temporal locality characteristics. This suggests that an inner loop
may be a good place to change the cache line size and maintain the setting for
the duration of such a loop. In this paper we study the performance of changing
the cache line size at loop level and show that such an approach is feasible.

We currently use a profile–based mechanism for the control of adaptation
by the compiler. Future work will study the opportunity to use compile–time
analysis for making adaptivity decisions.

2 System Organization

The system being studied consists of a 3–level memory hierarchy. The cache line
size is reconfigurable at run time using a special instruction. The set of sizes is:
8, 16, 32, 64, 128 and 256 bytes. A fully associative write buffer is also used.

The L1 cache is direct mapped and the hit latency is assumed to be 1 cycle.
The L1 bus transfer takes 2 cycles. L2 is a 2–way set–associative with the access
latency of 15 cycles. The main memory access latency is 100 cycles.

3 Experimental Infrastructure

3.1 Simulator

The framework provided by the ABSS [2] simulation system is used in this study.
ABSS is a simulator that runs on SUN Sparc systems and is derived from the
MINT simulator [3].

The ABSS simulator consists of 5 parts: augmentor, thread management,
cycle-counting libraries, user-defined simulator of the memory system and the
application program.

The augmentor program (called doctor) parses the original application as-
sembly code, and adds instrumentation code that sends information about the
loads and stores executed by the program to the simulator.

Our custom memory architecture simulator simulates a 3–level memory hi-
erarchy, the cache line for the L1 cache is changeable at run time via commands
embedded in the simulated program.

3.2 Compilation

We have used version 2.95 of the GCC compiler collection to conduct all the
experiments. The compiler back–end was modified to emit special code sequences
before entering a loop, or on the code path for exiting a loop. Given that the
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compiler back–end is common to the C and Fortran77 compiler we were able to
use this instrumentation for compiling all the SPEC95 benchmarks.

The code sequences were used for adjusting the cache line size, and for col-
lecting statistics and identifying the loop (source file name and line number),
and signaling to the cache simulator that a loop is being entered or exited.

All the benchmarks where compiled using the -O2 optimization flag, the
target instruction set was SPARC V8plus.

4 Experiments

We have run the simulations for a memory system using different cache line sizes.
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Fig. 1. L1 miss rate for the loop containing the most memory references.

The results shown in Figure 1 are miss rate for the loop that contains the
most memory references for each benchmark is shown. It can be observed that
no individual cache line size gets the minimum miss rate for all benchmarks, and
that there is no rule for all benchmarks that could determine the optimal cache
line size.

Figure 2 shows that even for the same benchmark, different loops have better
miss rates for different cache line sizes. Based on these two fact we can conjecture
that adapting the line size on loop boundaries improves the miss rate.

We used profiling to determine the best cache line size for each loop, we run
the benchmarks using the training input set, determined for each loop what is
the cache line size that generates the minimum miss rate and used that data
to run the benchmarks using a compiler generated instruction to change the
cache line size to the one that was determined to generate the minimum number
of misses. This approach is practical since we have determined that the data
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Fig. 2. L1 miss rate for the loops that generate most memory references for the com-
press benchmark

obtained using the small, manageable training input sets extrapolates well to
the actual application. The results are shown in Figure 3. It can be seen that
the miss rate always improves, sometimes by a wide margin.

Another interesting observation can be made from Figure 3. The “worst case”
data is obtained by using the profile data for setting the line size in such way
to maximize the miss rate. It can be observed that this worst case is in all cases
very close to the miss rate for at least one of fixed line sizes. So it is likely that
for about any fixed line size there will exist an application that will have a very
high miss rate, therefore cache line size adaptability is a worthwhile feature for
a general purpose processor that has to run well a variety of applications.

5 Conclusions and Future Work

We have shown that adapting the cache line size on a per loop basis improves
the cache miss rate. We have used a profile base approach, future work will
determine the cache line size at compile time using analytical approaches and
we are also working on using hardware based approaches to dynamically change
the cache line size.
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Summary of Question/Answer Sessions for
Workshop Presentations

Workshop Notes

These notes summarize the question and answer sessions held after each
presentation. They are a combined collection of notes from Mark Oskin and
Frederic T. Chong.

1 Memory Technology

Embedded DRAM: Technology and Challenges
Subramanian S. Iyer, IBM Microelectronics

The DRAM process lags about two generations in performance and one gen-
eration in density over logic processes. The IBM embedded-DRAM (eDRAM)
cell is 1.3X the size of conventional DRAM but the overall area of conven-
tional DRAM is greater due to lower drive. Consequently, as a rough approxi-
mation it is the same size. DRAM storage devices are not scaled with process
technology. Using the IBM eDRAM process costs about 20-25% more than a
conventional DRAM process. There is a lower device yield due to MDL. Cer-
tain areas, such as the network processor market may benefit from a better
cost-performance target, even though the integration cost of using eDRAM
is increased. The access time to on-chip eDRAM is about 4.2ns, which is
approaching the access time of SRAM. Finally, while there is some variety
in the DRAM macro blocks, most customers use only one or two types.

A 64MBit Mesochronous Hybrid Wave Pipelined Multibank DRAM
Macro
Junji Ogawa and Mark Horowitz, Stanford University

Using the 0.18um commodity process, a 1-2MBit size DRAM macro block
is optimal. The area overhead of the hybrid scheme is only about 2%.

Software controlled Reconfigurable On-chip Memory for High Perfor-
mance Computing
Hiroshi Nakamura, Masaaki Kondo, and Taisuke Boku, University of Tokyo, and
the University of Tsukuba.

The Quantum Chromo-Dynamics (QCD) application assumed 1MB of on-
chip memory. The CG application from the NAS parallel benchmarks was
not a major contributor to the overall performance. The configuration of the
on-chip memory is not altered during application execution due to the high
reconfiguration cost.
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2 Processor and Memory Architecture

Content-based Prefetching: Initial Results
Robert Cooksey, Dennis Colarelli and Dirk Grunwald, University of Colorado

Coverage is “low” on synthetic, and even lower for real data. It is an open is-
sue on whether this is a problem or not. On the Olden benchmarks, the stride
prefetcher worked best. John Carter points out that quad tree prefetching
performs well, but you have to try and avoid wasting bandwidth.

Memory System support for Dynamic Cache Line Assembly Lixin
Zhang, Venkata K. Pingali, Bharat Chandramouli and John B. Carter, Uni-
versity of Utah

The pages are not pinned. The mapping can be altered at runtime. The
SDRAM timing was extensively modeled in detail.

Adaptively Mapping Code in an Intelligent Memory Architecture
Yan Solihin, Jaejin Lee, and Joseph Torrellas, University of Illinois at Urbana-
Champaign, Michigan State University and Los Alamos National Laboratory

The “ideal” configuration is ideal for the P-MEM system or P-PROC, but
not for a system that dynamically switches between the two.

3 Applications and Operating Systems

Blue Gene
Marc Snir, IBM

The target clock rate for the on-chip logic was 500mhz. While running, the
machine has 18 million threads, 46,000 chips, and consumes 2MW of power.
A single processor contains 512K of DRAM and is about 20 square millime-
ters in size. Communication between processors is done via polling. The code
size is in the 10k range with only selective porting of the runtime environ-
ment. Code is replicated on every chip. The data access bandwidth per-chip
is on the order of 100 Gbytes. It was found that the 3D mesh configuration
has sufficient bandwidth for the applications, and communication becomes
latency bound.
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The Characterization of Data Intensive Memory Workloads on Dis-
tributed PIM Systems
Richard C. Murphy, Peter M. Kogge and Arun Rodrigues, University of Notre
Dame

Empty bits are used to support writable objects. The application thread
is responsible for returning the PIM and/or flushing data back. Thrash-
ing between threads was not found to be a problem – the address window
experiments demonstrate this. The thread stack is relatively small (a few
words). Currently, data is migrated by pulling data over once a thread has
been moved. Current work is looking at taking a small cache along with
the thread to further improve performance. Past research has nottried to
increase the number of registers to counteract the data migration issues.

Memory Management in a PIM-based Architecture
Mary Hall and Craig Steele, USC Information Sciences Institute

Multi-tasking is supported by “space sharing”. Allocations are done on PIM
level blocks. The global address space on the PIMs is specific to one par-
ticular process on the host. Current work is adapting Linux to be the host
operating system. Operating system support executing in the PIM is min-
imal: buffer management, network management and thread scheduling is
done on chip without host processor intervention. Large-scale allocation of
memory is coordinated with the host OS. A small scale OS is on-chip for
management of the heap, stack, etc. Predefined global segments is handled
by the PIM node miniature OS independently.

4 Compiler Technology

Exploiting On-chip Memory Bandwidth in the VIRAM Compiler
David Judd, Katherine Yelick, Christoforos Kozyrakis, David Martin, and David
A. Patterson, University of California at Berkeley

There are no issues with data alignment within a bank, unlike MMX instruc-
tions. A benefit to virtualizing the hardware is that one does not have to
change the compiler every time they change the hardware. It is speculated
that a different approach would be to make the compiler parameter driven
due to the regularity of the architecture. In VIRAM the software specifies
the maximum available parallelism that is found, and then leaves it up to the
hardware to use that information. The limitation on the number of address
registers is arbitrary, but was chosen because such devices take up a lot of
area. The compiler maintains memory consistency. Usually the vector unit
is running behind the scalar unit because the vector unit is deeply pipelined.
Where there is interaction between the vector and scalar units a memory
barrier must be implemented. The most expensive is the scalar after vec-
tor memory barrier. Conditional bits, as they are used in VLIW processors,
don’t come much into play with the multimedia applications studied thus
far.
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FlexCache: A Framework for Flexible Compiler Generated Data Caching
Csaba Andras Moritz, Matthew Frank, and Saman Amarasinghe, University of
Massachusetts, and Massachusetts Institute of Technology

Without FlexCache ISA support, the instruction stream is polluted, with 4
extra instructions for every single memory instruction. With ISA extension
there is no affect on the instruction cache. Currently, results assume all loads
go to the software cache. Future work will explore mixing a conventional and
a FlexCache. The TLB mechanisms are not implemented. Alias analysis for
pointers is very precise, and current work has not looked at relaxing this.
The model implements a check so even if incorrect alias analysis happens
the model still works.

5 Open microphone

Konrad Lai (Intel)
Processors are quickly reaching the limits of power density. Memory has
lower power density than computational logic. Memory requirements are
logarithmic over years. On-chip cache will dominate chip area of future mi-
croprocessors – but is there a better way? Even though the processor is only
a small percent of the total area, it still consumes 90% of the power. The
point is that from a power perspective you are going to have a lot of memory
transistors due to power density problems. DRAM has a lower power con-
sumption per mm2 (lower PDA) due to multiple voltages, worse transistors,
etc. (Most power consumption is in the sense-amplifiers and not in the bit
array). The difference between DRAM/logic power consumption is 10x, even
with high use 5x. Should one spread logic around to lower PDA hot spots?
Perhaps implement more logic but not use it all the time?
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